
Intro to BricxCC Programming – last updated 10/29/22  
 

© Copyright Paul Oh 

   
Hands-on Lab 

 
Lego NXT Domabot – Wall-following PID 

 
An ultrasonic sensor (US) is mounted on the Domabot’s portside (left).  The US measures the 
distance of a wall on the Domabot’s portside.  A PID controller is used to regulate a desired wall-
to-portside distance.  
 
Concept 1 – Program Structure:  
 
Step 1: Create a new file called wfPid1_0a.nxc 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// FILE: wfPid1_0a.nxc - Works! 
// DATE: 10/27/22 12:22 
// AUTH: P.Oh 
// DESC: Domabot US sensor (Port 4) senses a wall left of it.  Domabot always 
//       turns left (CCW yaw) as it moves along wall. PID or bang-bang (i.e. 
//       when PID gains all are zero) is used to calculate turning speed 
// VERS: 1.0a:  ME 425 release 
// REFS: wfbb0_1a3.nxc; x^2File1.0.nxc; wf2Us0_3a1.nxc 
 
// Global variables ----------------------------------------------------------- 
  int xWall;                // wall distance [cm] 
  int dWall;                // desired wall distance [cm] 
  float wKp, wKi, wKd;      // wall PID gains; 
  float wE, wEDot, wEInt;   // wall error and its derivative and integral 
  float wEPrev;             // wall error previous value 
  float wCorr;              // wall related motor power correction [0, 100] 
  int speedA, speedC;       // motor speed for A (right) and C (left) 
  int speedBase;            // motor base speed 
  bool orangeButtonPushed, rightButtonPushed, leftButtonPushed; // NXT buttons 
 
task main() { 
 
  // Variable initializations ------------------------------------------------ 
  xWall = 0;                // initialize wall distance to 0 
  dWall = 10;               // Desired distance from wall [cm] 
  wKp = 0.0;                // Wall P gain e.g. (PID)=[1.5, 0.005, 30.0] 
  wKi = 0.0;                // Wall I gain 
  wKd = 0.0;                // Wall D gain 
  wE = wEDot = wEInt = 0.0; // initialize wall error-related values to 0 
  wEPrev = 0.0;             // initialize previous wall error to 0 
  speedBase = 30;           // Domabot base motor speed at 50% i.e. mid-point 
 
  // Algorithm begins --------------------------------------------------------- 
 
  TextOut(0, LCD_LINE2, "-> BTN to proceed" ); 
  SetSensorLowspeed(IN_4); // Wall on Left US (Port 4) 
 
  do { 
    rightButtonPushed = ButtonPressed(BTNRIGHT, FALSE); 
    xWall = SensorUS(IN_4); // for wall detection (on left, Port 4) 
    TextOut(0, LCD_LINE3, FormatNum("Wall = %3d cm" , xWall)); 
  } while(!rightButtonPushed); 
 
  ClearLine(LCD_LINE2); 
  TextOut(0, LCD_LINE2, "<- BTN to QUIT" ); 



Intro to BricxCC Programming – last updated 10/29/22  
 

© Copyright Paul Oh 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 2: Using the variables declared in wfPid1_0a.nxc one sees that the current wall error wE 
is the difference between the measured wall distance xWall and desired wall distance dWall.  
That is wE = xWall – dWall.   The derivative of the wall error wEDot is just the difference 
between the current wall error wE and previous wall error prevWPrev.  Highlighted in yellow one 
sees that before the loop returns for the next iteration, the previous wall error wEPrev is set equal 
to the current wall error wE.  Lastly, the sum (i.e. integral) of the wall error wEInt is the sum of 
current wall error wE and previous sum of the wall errors wEInt.  With this knowledge one can 
add PID correction as 
 

wCorr = wKp * wE + wKi * wEInt + wKd * wEDot; 
 
 

  do { // continue wall following until left button pushed 
    leftButtonPushed = ButtonPressed(BTNLEFT, FALSE); 
    xWall= SensorUS(IN_4);      // left US (Port 4) 
    TextOut(0, LCD_LINE3, FormatNum("Wall = %3d cm" , xWall)); 
    // (1) Calculate wall-following PID gains 
 
 

Add PID control effort here by calculating error, 
derivative of error, and integral of error 
 
    // (1A) Check for motor staturation i.e. resulting wCorr forces 
    // motor getting > 2*speedBase (if speedBase > 50, this means > 100) 
    if(wCorr > 0 && wCorr > speedBase) { 
       wCorr = speedBase;       // saturated so set correction to speedBase 
                                // So Motor A speed max will be 2*speedBase 
    }; 
    if(wCorr < 0 && wCorr < -speedBase) { 
        wCorr = -speedBase;     // saturated so set correction to -speedBase 
                                // So Motor C speed min will be 0 
    }; 
    // (1B) If PID gains all zero, then wCorr = 0 so do bang-bang 
    if(wCorr == 0 && xWall < dWall) { 
           wCorr = -speedBase;  // Move away from wall: C = basespeed, A = 0 
    }; 
    if(wCorr == 0 && xWall >= dWall) { 
           wCorr = speedBase;   // Move towards wall: A = basespeed, C = 0 
    }; 
 
    // (2) Command motors 
    speedA = speedBase + wCorr; 
    speedC = speedBase - wCorr; 
    OnFwd(OUT_C, speedC); 
    OnFwd(OUT_A, speedA); 
    // (3) update wall errors for next derivative calculation 
    wEPrev = wE; 
  } while( (!leftButtonPushed)  ); // end do-loop 
 
   // (4) User pushed <-- (Left) Button, so exit gracefully 
   Off(OUT_AC); 
   PlaySound(SOUND_DOUBLE_BEEP); 
   Wait(5000); 
   StopAllTasks(); 
 
} // end main 
   
} // end of main 
 



Intro to Bricx
 

Step 
wKd = 0.0
Domabot 4 to 5 cm from the wall 
maintain a wall
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

ntro to BricxCC Programming 

Step 3: Contrast bang
wKd = 0.0.  For P
Domabot 4 to 5 cm from the wall 
maintain a wall-to-portside distance of 10 cm

Blue tape is 10 cm from wall baseboard.  Ultrasonic sensor shows portside sensor at 10 cm

Domabot portside tire 

CC Programming –

Contrast bang-bang and P
For P-only control, set 

Domabot 4 to 5 cm from the wall 
portside distance of 10 cm

Blue tape is 10 cm from wall baseboard.  Ultrasonic sensor shows portside sensor at 10 cm

Domabot portside tire 

– last updated 10

bang and P-only control performance.  
control, set wKp = 1.5; wKi = 0.0;

Domabot 4 to 5 cm from the wall (see photos below) 
portside distance of 10 cm

Blue tape is 10 cm from wall baseboard.  Ultrasonic sensor shows portside sensor at 10 cm

Domabot portside tire touches the baseboard.  Ult

last updated 10/29/22  

only control performance.  
wKp = 1.5; wKi = 0.0;

(see photos below) 
portside distance of 10 cm (marked by blue painters tape on the floor)

Blue tape is 10 cm from wall baseboard.  Ultrasonic sensor shows portside sensor at 10 cm

the baseboard.  Ult

 

only control performance.  For bang
wKp = 1.5; wKi = 0.0; 

(see photos below) and observe its performance trying to 
(marked by blue painters tape on the floor)

Blue tape is 10 cm from wall baseboard.  Ultrasonic sensor shows portside sensor at 10 cm

the baseboard.  Ultrasonic sensor shows this is 4 cm

© Copyright Paul Oh

For bang-bang set wKp = wKi = 
 and wKd = 0.0

and observe its performance trying to 
(marked by blue painters tape on the floor)

Blue tape is 10 cm from wall baseboard.  Ultrasonic sensor shows portside sensor at 10 cm

rasonic sensor shows this is 4 cm

© Copyright Paul Oh

wKp = wKi = 
wKd = 0.0.  Set the 

and observe its performance trying to 
(marked by blue painters tape on the floor).   

Blue tape is 10 cm from wall baseboard.  Ultrasonic sensor shows portside sensor at 10 cm

rasonic sensor shows this is 4 cm 

© Copyright Paul Oh 

wKp = wKi = 
Set the 

and observe its performance trying to 

Blue tape is 10 cm from wall baseboard.  Ultrasonic sensor shows portside sensor at 10 cm 
 

 



Intro to Bricx
 

Concept 
 
Step 1:
 
Recalling 
 
Step 2
plots look similar to the following
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

YouTube
 

YouTube: 
 

ntro to BricxCC Programming 

Concept 2 – Data acquisition of wall

Step 1: Create a new file called 

Recalling w^2File1_0.nxc

Step 2: Re-run your programs to contrast bang
plots look similar to the following

YouTube: https://youtu.be/DlVmcWBeccw

YouTube: https://youtu.be/edauCdpyZMA

CC Programming –

Data acquisition of wall

reate a new file called 

w^2File1_0.nxc, add file saving functions to 

run your programs to contrast bang
plots look similar to the following

Figure A

https://youtu.be/DlVmcWBeccw

https://youtu.be/edauCdpyZMA

– last updated 10

Data acquisition of wall

reate a new file called wfPidFile

, add file saving functions to 

run your programs to contrast bang
plots look similar to the following 

Figure A: Excel 

https://youtu.be/DlVmcWBeccw 

https://youtu.be/edauCdpyZMA  

last updated 10/29/22  

Data acquisition of wall-following performance

File1_0a.nxc 

, add file saving functions to 

run your programs to contrast bang-bang and P

 

 
 
 
 
 

l plots of bang

 

 

 
YouTube: 
 

 

following performance

, add file saving functions to wfPidFile1_0a.nxc

bang and P-only control.  C

plots of bang-bang and P-

 
YouTube: https://youtu.be/edauCdpyZMA
 

YouTube: https://youtu.be/YWy7kzwAUnM
 

© Copyright Paul Oh

following performance 

wfPidFile1_0a.nxc.   

only control.  Confirm that your Excel 

-only control 

https://youtu.be/edauCdpyZMA

https://youtu.be/YWy7kzwAUnM

© Copyright Paul Oh

 

onfirm that your Excel 

 

https://youtu.be/edauCdpyZMA 

https://youtu.be/YWy7kzwAUnM

© Copyright Paul Oh 

onfirm that your Excel 

 

  

 
https://youtu.be/YWy7kzwAUnM  

 


