
Intro to BricxCC Programming

© Copyright Paul Oh

Hands-on Lab

BricxCC – Strings, Motors and Touch Sensor

Previously, one learned how to install BricxCC as well as write, compile and execute basic NXC
programs. One learned about variable types (e.g. int, and float), conditions (e.g. if-then), and
loops (e.g. do-while), as well as displaying both text (i.e. TextOut) and numbers (i.e. FormatNum).

This lab introduces strings as well as output hardware like motors and inputs like NXT buttons
and touch sensors.

Concept 1 – Strings and Buttons

A string variable is one that is assigned one or more alphanumeric characters. Often, string
variables are confusing to those who are new to the C language. One must understand the
difference between numeric characters “7028951331” and numeric values like 7028951331. The
former represents the UNLV Mechanical Engineering phone number; one would not perform math
on this string variable. The later represents a very large number e.g. the population of New
York City; one could perform math (e.g. additions, subtractions, etc) on this long int variable.

String variables will become more important when the topic of files is introduced in later labs.
For now, several examples and functions are given to appreciate the string variable.

Step 1: Type and Save the program in Figure 1-1 as strcat1_0a.nxc

task main ()
// FILE: strcat1_0a.nxc
// DATE: 09/09/22 12:53
// AUTH: P.Oh
// DESC: Demonstrate different string functions
// VERS: 1.0a: strcat, ClearScreen, ClearLine, and Buttons

task main() {
 string firstName, lastName, nickName; // person's first names
 string fullName; // stores result of strcat
 bool rightButtonPushed, leftButtonPushed; // Right and left arrow buttons
 bool orangeButtonPushed; // Center button (to start program)

 firstName = "James" ;
 lastName = "Bond" ;
 nickName = "007" ;

 TextOut(0, LCD_LINE1, "Orange Btn starts");
 do{
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);

 ClearScreen(); // clears anything that's on the NXT brick's screen

 TextOut(0, LCD_LINE7, "-> Next");

 do {
 rightButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 TextOut(0, LCD_LINE2, firstName);
 TextOut(0, LCD_LINE3, lastName);
 TextOut(0, LCD_LINE4, nickName);
 } while(!rightButtonPushed) // end do-loop

Intro to BricxCC Programming

© Copyright Paul Oh

Code Description: Highlighted in yellow are new functions. The first is ButtonPressed,
which is a function that uses the pre-defined variables like BTNCENTER, BTNLEFT, BTNRIGHT
and BTNEXIT. These variables reflect the value of the NXT Brick’s Orange (center), Left Arrow,
Right Arrow, and Grey (bottom) buttons. If a button is pushed, its variable’s value becomes
TRUE.

ButtonPressed is thus useful for waiting for a user’s input. One sees this in the first do-while
loop. The loop cycles forever (doing nothing but polling ButtonPressed) and exits when the
Orange (center) button is pushed.

The second highlighted line introduced ClearScreen. This function simply clears anything that
was displayed previously. There is a similar function called ClearLine. As its name suggests,
it will only clear anything displayed on the specified line e.g. ClearLine(LCD_LINE4) would
only clear what was displayed previously in LINE 4 of the Brick’s display.

The second do-while loop simply displays the values of string variables firstName,
lastName and nickName. This is continuously displayed on the NXT Brick, until the user
pushes the Right Arrow button.

The third (and last) highlighted line introduced the StrCat function. This function takes as
inputs, different strings, that are separated by commas, and concatenates (sticks together) them
and assigns the result to the string variable named fullName. The third (and last) do-while
loop simply displays fullName, until the user pushes the Left Arrow button. Once pushed, the
loop exits, a double-beep is played, and the program ends.

Figure 1-1: Program strcat1_0a.nxc

 ClearScreen();
 TextOut(0, LCD_LINE7, "<- Quit");

 fullName = StrCat(firstName, " (", nickName, ") ", lastName);

 do {
 leftButtonPushed = ButtonPressed(BTNLEFT, FALSE);
 TextOut(0, LCD_LINE2, fullName);
 } while(!leftButtonPushed) // end do-loop

 PlaySound(SOUND_DOUBLE_BEEP);

} // end of main

Exercise 1: In NXC create programs for the following:

1-1 Look up the StrLen function. Modify strcat1_0a.nxc to additionally display the number of

characters in firstName, lastName, and nickName

Intro to BricxCC Programming

© Copyright Paul Oh

Concept 2 – Motors: An NXC program to command NXT motors to move

Step 1: Open a new file and save as “helloMotor.nxc”. Type the NXC code in Figure 2-1,
save, compile and run

Step 2: Attached 2 NXT motors (to Ports A and C) on the Brick

Step 3: Save All, Compile, then Download and Run

Code Explanation: The NxC manual describes OnFwd and OnRev statements. These are specific
to NXC and not part of the ANSI-C standard. Often, specific hardware (like NXT motors and
sensors) dictate using non-ANSI standard statements. The OnFwd statement uses the defined
constant OUT_AC to reference Brick ports A and C and commands motors connected to these
ports to run at 75% of maximum power. Similarly, the OnRev statement commands the motors to
rotate in the opposite direction at 25% of maximum power. Lastly, Off and StopAllTasks are
additional non-ANSI statements, to stop the motors and exit the program gracefully.

Figure 2-1: helloMotor.nxc – Rotate Motors A and C then Counter-rotate them

// FILE: helloMotor1_0.nxc
// AUTH: P.Oh
// DATE: 03/16/11
// DESC: Motors connected to Ports A and C. Command to rotate,
// and counter-rotate fixed amount

task main() {

 OnFwd(OUT_AC, 75);
 // NXC Guide P. 294 (6.36.2.27): OnFwd(byte outputs, char pwr)
 // outputs is OUT_X where X = [A, B, C, AB, AC, BC, ABC]
 // pwr is from [0, 100]
 Wait(5000); // continues for specified milliseconds
 OnRev(OUT_AC, 25);
 // NXC Guide P. 300 (6.36.2.37)
 Wait(2000);

 Off(OUT_AC); // stop and end program gracefully
 StopAllTasks();

}

Exercise 2: In NxC create programs for the following:

2-1 Modify helloMotor.nxc by adding a do-while loop. This loop should repeat the

OnFwd(OUT_AC, 75), Wait(5000), OnRev(OUT_AC, 25); Wait(2000) cycle 3-times.

2-2 Look up the RotateMotor statement (page 308 Section 6.36.2.255). Set Motor A to run at a
power level of 75 and rotate to -180 degrees.

Intro to BricxCC Programming

© Copyright Paul Oh

Concept 3 – Touch Sensor: An NXC program to detect state of NXT Touch Sensor

Step 1: Connect a motor to Port A of the NXT. Connect a Touch Sensor to Port 1 of the NXT.
Then type and save the NXC program “helloMotor.nxc” shown in Figure 3-1.

Code Description: The first yellow highlight introduces the function SetSensorTouch. It takes
as input the pre-defined variable IN_1, IN_2, IN_3, or IN_4. The variable is whichever port the
Touch Sensor is plugged into. In this case, it is IN_1.

The second yellow highlight uses Sensor(IN_1) to read the value of the Touch Sensor and
assign it to the variable named touchSensorValue. Whenever the Touch Sensor is pushed,
then touchSensorValue will have a value of 1. When it’s not pushed, then the value of
touchSensorValue will be 0.

Figure 3: File touch1_0a.nxc – motor rotates CW or CCW depending on state of Touch sensor

// FILE: touch1_0a.nxc
// DATE: 09/09/22 15:36
// AUTH: P.Oh
// DESC: Touch sensor (on Port 1) to rotate motor (on Port A) CW or CCW
// VERS: 1.0a: simple rotation CW or CCW

task main() {

 byte touchSensorValue; // value is 0 or 1
 bool orangeButtonPushed, rightButtonPushed, leftButtonPushed, greyButtonPushed;
 byte motorPower; // a value [0, 100] with 100 being highest motor power

 motorPower = 50; // set motor's power to 50% of max speed
 SetSensorTouch(IN_1); // touch sensor connected into Port 1

 TextOut(0, LCD_LINE1, "Orange Btn starts");
 do{
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);

 ClearScreen();
 TextOut(0, LCD_LINE1, "-> Quits");

 do {
 rightButtonPushed = ButtonPressed(BTNRIGHT, FALSE);
 OnFwd(OUT_A, motorPower); // start rotating CW
 touchSensorValue = Sensor(IN_1); // read touch sensor
 // value of 0 = not pushed and 1 = pushed
 NumOut(0, LCD_LINE4, touchSensorValue);
 if(touchSensorValue == 1) { // touch sensor button was pushed
 do{ // reverse rotation while touch sensor button held down
 OnRev(OUT_A, motorPower);
 touchSensorValue = Sensor(IN_1);
 } while(touchSensorValue == 1); // end do-while
 }; // end if
 // touch sensor button is not longer pushed and/or held down
 } while(!rightButtonPushed); // end do-while

 // Right Arrow button was pushed, so exit gracefully
 Off(OUT_A);
 TextOut(0, LCD_LINE7, "Bye!");
 PlaySound(SOUND_DOUBLE_BEEP);
 Wait(SEC_5);
 StopAllTasks();
} // end of main

Intro to BricxCC Programming

© Copyright Paul Oh

The third yellow highlighted lines of code uses a conditional if statement. Here, if the Touch
Sensor is pushed (i.e. touchSensorValue is 1), a do-while loop is executed. The do-while
loop reverses the motor’s rotation using an OnRev statement. The do-while loop also polls the
Touch Sensor’s value. It exits the loop if the Touch Sensor is released, and returns to rotating
the motor forward with the OnFwd statement.

Exercise 3: In NxC create programs for the following:

3-1 In touch1_0a.nxc one observes that the Touch Sensor must be held down in order to rotate in
the reverse direction. Modify the program so that if the Touch Sensor is only pushed (and not
held down), the motor reverses direction. When the Touch Sensor is pushed again, the motor
moves in the forward direction.

