Motorized Damped Compound Pendulum — PID Control

Hands-on Lab

Motorized Damped Compound Pendulum — PID Control

Preamble:

Recall that system identification was performed on a damped compound pendulum (DCP) and
revealed second order dynamics; the pendulum oscillates and eventual comes to a stop due to
damping. Below is a motorized version of the DCP. Commanding the motor to spin, the propeller
will generate lift. The lift force acts on along the length of the pendulum, resulting in a torque
around the pivot point. Again, due to the pendulum’s second order dynamics, the pendulum’s
angle will oscillate over time — eventually reaching a steady-state value. This steady-state angle
balances the torques due to lift and gravity.
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Concept 1 System Response

1-1: Capture input-output response

Step 1: Clamp the motorized DCP with Port 1 connected to the Mindsensor MTRMX-Nx motor
driver and Port 2 connected to the HiTechnic angle sensor.

Step 2: Download, compile and execute pendulumOlsrl_1.nxc. Observe NXT screen.

This code is an open-loop step response. The motor command is set to 128 (halfway between 0
and 255). The motorized propeller spins and the DCP’s response (i.e. angle) is recorded to a file
called pendulumOlsr.csv.

Step 3: From Bricx NXT Explorer, copy the capture angle data (pendulumOlsr.csv) to your
computer. Use Excel to line plot a graph of angle [deg] (y-axis) over time [sec] (x-axis). Fig 1-1A
(left) shows an example. One sees that the DCP’s step response to a motor command; the angle
(in degrees) oscillated to a motor command (128), and after about 7-seconds, reach a steady-
state value of 18-degrees.
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Fig 1-1A: Time plot of pendulum angle in degrees (left). A close up of the time plot (right)

Step 4: From your plot, calculated the damping ratio and natural frequency. Note that the
amplitudes are referenced from the steady-state angle. Recall the 2 relationships:
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Fig 1-1A (right) is a close up of the time response and identifies the following: a = 28 — 18 =
10,b =24 —-18=6,and T = 1.9 — 0.89 = 1.01 sec. Substituting these values into (1A), one has:

10 2n
In—=0.51 =

6 [1— 2
2
(051/1=02)" = (¢2m)?
Solving for ¢ one has 0.26(1 — {?) = {?4m? or 0.26 — 0.26{? = 39.5(? or ultimately:

39.76¢2 = 0.26 or { = 0.081 (2A)

Substituting the damping ratio {into (1B), yields the following

2T
—— = w1 —0.0812

1.01
6.22 = w,v0.993 or w,, = 6.24 (2B)

Substituting (3A) and (3B) into the general 2" order dynamic equation (1) yields

6 + 2(0.081)(6.24)6 + (6.24)2 ?3)

6 +1.016 +389=0
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Step 5: Determine motor constant.

Fig 1-1B is a block diagram depiction relating the input (motor command) and output (angle)

K

TS24 2¢w,s + w?

M(S) —> GOL > @(S)

Fig 1-1B: Open loop transfer function

The DCP is represented by the open loop transfer function (OLTF) G(s),,and relates the input
M(s), the motor command (a humber between 0 and 255), and output named 0(s).
Mathematically, one has:

0(s) B K (4)
M(s) G(Sow = s? 4+ 2{w,s + w3

Here, Kis an unknown constant that encompasses the properties of the motor, propeller, and the
DCP’s moment of inertia, length, and lever arm distance. One can calculate Kas follows:

From (4) recognize that
(s? + 2Cw,s + w2)0(s) = KM(s) (5)
Or, in time domain, (5) becomes
6 + 2{w,0 + w20 = Km(t) (6)

At steady-state, the pendulum is motionless hence 6 = § = 0. From Fig 1-1A, the steady-state
angle is 6, = 18degrees. Hence, with (2B), (6) becomes

0+0+624%- 0, = K - mg,
389-18 =K -128

(o 389-18 7002 . (7)
~ 128 128 7

With (7) and (3) the OLTF becomes

5.47 (8)
s?2 +1.016 + 38.9

G(S)oL, =
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Step 6: Simulate motorized DCP in Simulink or XCOS

Fig 1-1C depicts the OLTF (left) and response (right)
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Fig 1-1C: XCOS modeling of a 128 step input command to the Lego-based motorized damped
compound pendulum (left). Using the damping ratio, natural frequency, and gain K, a step
response simulation can be run (right). This simulated plot of angle over time matches the
experimental data shown in Fig 1-1A

Recall, that the general solution for (4) is given by

0. (t) =e {Al cos(wnt 1-¢? )+ A, sin(a)nt 1-¢? )} (5A)

The complex roots are given by

S, =—Co, * o 1-¢7 (5B)
Substituting the values from (3A) and (3B) into (5B), that for the system captured in Fig 1-2A:
s12 = —(0.053)(4.42) + jw,/1 - {2
S12 = —0.23 + j4.424/0.997

S12 = —0.23 + 4.41j (6)

From (6) one sees the real part of the complex roots is negative. Thus (5A) yields an
exponentially decaying response; small values mean long settling times. The amplitude of
oscillation is governed by imaginary values of the complex roots.
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Exercise

1.1 Capture the time response of your motorized damped compound pendulum. Capture

your plot (similar to Fig 1-2A left).

1.2 From your plot, identify the height of consequent peaks, and the time between peaks.
Use these to calculate the damping ratio {and natural frequency w,for your system.

1.3 From your damping ratio and natural frequency, calculate the characteristic equation i.e.

(4) and the roots i.e. (6)

Concept 2 — PID Simulation

In Xcos (or Simulink) one can implement PID control with the DCP model:

urses\meA2S\ \xcosFid11: =lolx
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Fig 2-1A: Xcos implementation of damped compound pendulum Equation (7).
Here, the context is set to z = 0.081, w = 6.24, K=5.47, Kp = 1, Ki = 0, Kd = 0. The simulation

was set to run for 15 seconds.

The DCP is a Type 0 system. In other words, there are no free integrators (s terms) in the
denominator. Theory says that a step response into a Type 0 system has the following

characteristics:
Gain Steady-State Error | Transient Response | Stability
Proportional Always have error | Faster Overshoot if 2" order system
Integral Zero error Faster Can go unstable
Derivative Always have error | Slower No overshoot if 2™ order system

Table 2-1: Shows cause and effect of increasing P, | or D gains

Fig 2-2A shows plots that verify the above statements
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Fig 2-2B: Various plots running simulation in Fig 2-1A.

Exercise

2.1 Replicate Fig 2-2B by simulating your system. Capture 6 plots: (1A) Proportional-only;
(1B) Higher proportional-only; (2A) Integral-only; (2B) higher integral-only; (3A)
proportional + derivative; (3B) higher proportional-derivative

2.2 Produce 4 plots using various combinations of PID gains: (A) zero steady-state error, no
overshoot; (B) zero steady-state error, faster transient response than (A) and overshoot
allowed; (C) zero steady-state error, faster transient response than (A) and no overshoot
allowed; (D) unstable response
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