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Preamble:  
 
Recall that system identification was performed on a damped compound pendulum (DCP) and 
revealed second order dynamics; the pendulum oscillates and eventual comes to a stop due to 
damping.  Below is a motorized version of the DCP.  Commanding the motor to spin, the propeller 
will generate lift.  The lift force acts on along the length of the pendulum, resulting in a torque 
around the pivot point.  Again, due to the pendulum’s second order dynamics, the pendulum’s 
angle will oscillate over time – eventually reaching a steady-state value.  This steady-state angle 
balances the torques due to lift and gravity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Concept 1 System Response  
 
1-1: Capture input-output response 
 
Step 1: Clamp the motorized DCP with Port 1 connected to the Mindsensor MTRMX-Nx motor 
driver and Port 2 connected to the HiTechnic angle sensor. 
 
Step 2: Download, compile and execute pendulumOlsr1_1.nxc.  Observe NXT screen. 
 
This code is an open-loop step response.  The motor command is set to 128 (halfway between 0 
and 255).  The motorized propeller spins and the DCP’s response (i.e. angle) is recorded to a file 
called pendulumOlsr.csv. 
 
Step 3: From Bricx NXT Explorer, copy the capture angle data (pendulumOlsr.csv) to your 
computer.  Use Excel to line plot a graph of angle [deg] (y-axis) over time [sec] (x-axis).  Fig 1-1A 
(left) shows an example.  One sees that the DCP’s step response to a motor command; the angle 
(in degrees) oscillated to a motor command (128), and after about 7-seconds, reach a steady-
state value of 18-degrees. 
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Step 4: From your plot, calculated the damping ratio and natural frequency.  Note that the 
amplitudes are referenced from the steady-state angle.  Recall the 2 relationships: 
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Fig 1-1A (right) is a close up of the time response and identifies the following:  ܽ ൌ 28 െ 18 ൌ
10, ܾ ൌ 24 െ 18 ൌ 6,	and	ܶ ൌ 1.9 െ 0.89 ൌ 1.01	sec.  Substituting these values into (1A), one has: 
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Solving for ߞ one has 0.26ሺ1 െ ଶሻߞ ൌ ଶ or 0.26ߨଶ4ߞ െ ଶߞ0.26 ൌ  :ଶ or ultimatelyߞ39.5
 

ଶߞ39.76 ൌ 0.26	or	ࣀ ൌ . ૡ 
 
 
Substituting the damping ratio ߞinto (1B), yields the following 
 

ߨ2
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6.22 ൌ ߱√0.993		or	࣓ ൌ .  
 
 
Substituting (3A) and (3B) into the general 2nd order dynamic equation (1) yields 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig 1-1A: Time plot of pendulum angle in degrees (left).  A close up of the time plot (right) 

(1A) 

(1B) 

(2A) 

(2B) 

ሷߠ  2ሺ0.081ሻሺ6.24ሻߠሶ  ሺ6.24ሻଶ 

ߠ ሷ  ሶߠ1.01  38.9 ൌ 0 
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Step 5: Determine motor constant.   
 
Fig 1-1B is a block diagram depiction relating the input (motor command) and output (angle) 
 
 
 
 
 
 
 
 
 
The DCP is represented by the open loop transfer function (OLTF) ܩሺݏሻைand relates the input 
  .ሻݏሻ, the motor command (a number between 0 and 255), and output named Θሺݏሺܯ
Mathematically, one has: 
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Here, ܭis an unknown constant that encompasses the properties of the motor, propeller, and the 
DCP’s moment of inertia, length, and lever arm distance.  One can calculate ܭas follows: 
 
From (4) recognize that  
 

ሺݏଶ  ݏ߱ߞ2  ߱ଶሻΘሺݏሻ ൌ  ሻݏሺܯܭ
 
Or, in time domain, (5) becomes 
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At steady-state, the pendulum is motionless hence ߠሷ ൌ ሶߠ ൌ 0.  From Fig 1-1A, the steady-state 
angle is ߠ௦௦ ൌ 18degrees.  Hence, with (2B), (6) becomes 
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38.9 ∙ 18 ൌ ܭ ∙ 128 
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With (7) and (3) the OLTF becomes 
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Fig 1-1B: Open loop transfer function 
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Step 6: Simulate motorized DCP in Simulink or XCOS 
 
Fig 1-1C depicts the OLTF (left) and response (right) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recall, that the general solution for (4) is given by  
 
 
 
 
 
The complex roots are given by 
 
 
 
 
Substituting the values from (3A) and (3B) into (5B), that for the system captured in Fig 1-2A: 
 

ଵ,ଶݏ ൌ െሺ0.053ሻሺ4.42ሻ േ ݆߱ඥ1 െ  ଶߞ
 

ଵ,ଶݏ ൌ െ0.23 േ ݆4.42√0.997 
 

ଵ,ଶݏ ൌ െ0.23 േ 4.41݆ 
 
From (6) one sees the real part of the complex roots is negative.  Thus (5A) yields an 
exponentially decaying response; small values mean long settling times.  The amplitude of 
oscillation is governed by imaginary values of the complex roots.   
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Fig 1-1C: XCOS modeling of a 128 step input command to the Lego-based motorized damped 
compound pendulum (left).  Using the damping ratio, natural frequency, and gain ܭ, a step 
response simulation can be run (right).  This simulated plot of angle over time matches the 
experimental data shown in Fig 1-1A 
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Concept 2 – PID Simulation 
 
In Xcos (or Simulink) one can implement PID control with the DCP model: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The DCP is a Type 0 system. In other words, there are no free integrators (s terms) in the 
denominator.  Theory says that a step response into a Type 0 system has the following 
characteristics: 
 
 
 
 
 
 
 
 
 
 
Fig 2-2A shows plots that verify the above statements 
 
 
 
 

Exercise  
 
1.1 Capture the time response of your motorized damped compound pendulum.  Capture 

your plot (similar to Fig 1-2A left). 
 

1.2 From your plot, identify the height of consequent peaks, and the time between peaks.  
Use these to calculate the damping ratio ߞand natural frequency ߱for your system. 

 
1.3 From your damping ratio and natural frequency, calculate the characteristic equation i.e. 

(4) and the roots i.e. (6) 
 

 
 
Fig 2-1A: Xcos implementation of damped compound pendulum Equation (7).   
Here, the context is set to z = 0.081, w = 6.24, K = 5.47, Kp = 1, Ki = 0, Kd = 0.  The simulation 
was set to run for 15 seconds. 

Gain Steady-State Error Transient Response  Stability 
Proportional Always have error Faster Overshoot if 2nd order system 
Integral Zero error Faster Can go unstable 
Derivative Always have error Slower No overshoot if 2nd order system 
 

Table 2-1: Shows cause and effect of increasing P, I or D gains 
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Exercise  
 
2.1 Replicate Fig 2-2B by simulating your system.  Capture 6 plots: (1A) Proportional-only; 

(1B) Higher proportional-only; (2A) Integral-only; (2B) higher integral-only; (3A) 
proportional + derivative; (3B) higher proportional-derivative 
 

2.2 Produce 4 plots using various combinations of PID gains: (A) zero steady-state error, no 
overshoot; (B) zero steady-state error, faster transient response than (A) and overshoot 
allowed; (C) zero steady-state error, faster transient response than (A) and no overshoot 
allowed; (D) unstable response 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2-2B: Various plots running simulation in Fig 2-1A. 

 
 

Kp = 0.25, Ki = 0, Kd = 0. ߴ௦௦ ൌ 3ሾdegሿ 

 
 

Kp = 10, Ki = 0, Kd = 0. ߴ௦௦ ൌ 16ሾdegሿ 

 
Kp = 0, Ki = 0.5, Kd = 0. ߴ௦௦ ൌ 18ሾdegሿ

 
Kp = 0, Ki = 0.75, Kd = 0. ߴ௦௦ ൌ 18ሾdegሿ

 
Kp = 0.1, Ki = 0, Kd = 10 

 
Kp = 25, Ki = 0.5, Kd = 100. ߴ௦௦ ൎ 18ሾdegሿ 


