
Damped Compound Pendulum – System ID Experimental and Simulation

© Copyright Paul Oh

Hands-on Lab

Damped Compound Pendulum – System ID (Experimental and Simulation)

Preamble:

Sketched above is a damped compound pendulum; instead of a string with a mass at the end, the
pendulum is made from a solid (compound) material. Intuitively, the time response of the
pendulum’s angle would be a decaying oscillation. Due to damping, the angle would eventually
decay to θൌ0 degrees. Because of the oscillation, this is known dynamically, as a second-order
system.

Suppose one attached a motorized propeller at the end of the damped compound pendulum, as
shown in the above drawing. When the motor is actuated, the propeller spins and thus generates
lift. The damped compound pendulum will move and eventually reach a steady-state angleߠ.
This angle defines an equilibrium state; the lift balances the gravitational force acting on the
damped compound pendulum.

m g

d

L

d

dt
c

L

L Bar length m
d Pivot to CG distance m

Lm Mass of pendulum kg

Damped Compound Pendulum – System ID Experimental and Simulation

© Copyright Paul Oh

How quickly the damped compound pendulum reaches steady-state depends on the propeller’s
velocity. To reach steady-state quickly (i.e. fast rise time), one can command the propeller to
spin very fast. However, this could lead to a lot of oscillations (i.e. a stability issue). To reduce
oscillations, one can command the propeller to spin slowly (i.e. good stability). But then the
damped compound pendulum would take a long time to reach steady-state (i.e. slow rise time).

Specific Objective: Towards controller design, one must first understand the system’s dynamics.
This lab will employ an angle sensor to capture the damped compound pendulum’s dynamics.
This process is called system identification – which reveals the system’s characteristic equation
and hence the system’s inherent stability (i.e. poles) and performance (i.e. zeros).

Do First! See Build Instructions to construct a LEGO-based motorized damped compound
pendulum. The motorized propeller is driven by a DC motor driver (MTRMX-Nx). This motor
driver is sold by a 3rd-party vendor (Mindsensors) and is NXT-compatible. The pendulum’s state
is measured by an angle sensor made by HiTechnic.

Concept 1 System Identification (Experimental)

1-1: Measuring Pendulum angle

Step 1: After assembling your motorized damped compound pendulum, interface the NXT brick
to the angle sensor. See photo below for reference.

Fig. 1-1A: The HiTechnic angle sensor is
connected to the NXT brick on Port 1

General Objective: Design a controller that regulates the motorized propeller so that the
pendulum reaches a desired angle within a desired rise time and desired oscillation (i.e.
overshoot). PID control will be implemented to achieve such goals.

Damped Compound Pendulum – System ID Experimental and Simulation

© Copyright Paul Oh

Step 2: Enter, compile and execute helloHtAngleSensor1_0.nxc. Observe NXT screen.

The HiTechnic angle sensor uses I2C to interface with an NXT brick. HiTechnic’s angle sensor
reports measurements as an integer ranging from 0 to 359. Thus, this sensor has only 1-degree
accuracy.

// DESC: HiTechnic Angle Sensor on Brick Port 1. Display sensor data on LCD
// VERS: 1.0: Damped Compound Pendulum. CCW from rest yields +'ve angle
// and CW from rest yields -'ve angle

#define ANGLE S1 // HiTechnic Angle Sensor in Brick Port 1

task main() {
 int angle; // By default, with one's eyes on angle sensor axle,
 int pendulumAngle; // CW rotation increases from 0 to 359 degrees and
 // CCW rotation decreases from 359 downwards...
 // For damped compound pendulum at rest position i.e. hanging straight down
 // one wants CCW to increase from 0 towards 90 degrees...
 // Hence define variable pendulumAngle;

 long acc_angle;
 int rpm;
 bool orangeButtonPushed;

 SetSensorLowspeed(ANGLE);
 Wait(100);

 TextOut (0, LCD_LINE2, "Calibrate:");
 TextOut (0, LCD_LINE4, "Set zero angle");
 TextOut (0, LCD_LINE6, "Orange Btn: starts");

 do {
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 Wait(100); // delay needed for button debounce
 // Nothing until Orange button pushed
 } while(!orangeButtonPushed);

ResetSensorHTAngle(ANGLE, HTANGLE_MODE_CALIBRATE);
 // Angle should be zero now...

 // ButtonPressed(BTNCENTER, TRUE); // reset to false

 ClearScreen();
 TextOut (0, LCD_LINE2, "Running...");
 TextOut (0, LCD_LINE4, "Orange Btn: Quit");

 pendulumAngle = 0; // i.e. damped compound pendulum hanging down at rest

Damped Compound Pendulum – System ID Experimental and Simulation

© Copyright Paul Oh

Code Explanation: The HiTechnic angle sensor is connected to the NXT brick through Port 1.
As such, a variable ANGLE is defined as S1. The angle sensor is then initialized with a
SetSensorLowSpeed (ANGLE) statement. A few variables are declared to report raw angle,
calculate pendulum angle and detect the state of the NXT orange button.

The ResetSensorHTAngle(ANKLE, HTANGLE_MODE_CALIBRATE) statement will read the
sensor and set the value to 0. In other words, this allows one to calibrate the angle.

Suppose the following reference frame is desired: Let ߠ ൌ 0 to be the angle when the pendulum
is motionless (i.e. hanging down); counter-clockwise angles yield 0 ߠ 180; and clockwise
motions are െ180 ߠ 0. To variable pendulumAngle is used to reflect such a reference
frame.

A do-while loop reads the angle sensor using a ReadSensorHTAngle(ANGLE, angle,
acc_angle, rpm) statement, calculates pendulumAngle, and displays the value on the LCD.
The loop exits when the NXT’s orange button is pushed.

do {
 Wait(100);
 ReadSensorHTAngle(ANGLE, angle, acc_angle, rpm);

 if(angle >= 180 && angle <= 360)
 // pendulum rotating CCW, so pendulumAngle increases positively from 0
 pendulumAngle = 360 - angle;

 if(angle >=0 && angle < 180)
 // pendlum rotation CW, so pendulumAngle increases negatively from 0
 pendulumAngle = -angle;

 TextOut(0, LCD_LINE8, FormatNum("Angle = %3d deg" , pendulumAngle));
 orangeButtonPushed = ButtonPressed(BTNCENTER, FALSE);
 } while(!orangeButtonPushed);

 // Orange button pressed, so command 0 speed to motor
 ClearScreen();
 TextOut(0, LCD_LINE2, "Quitting", false);
 PlaySound(SOUND_LOW_BEEP); // Beep to signal quitting
 Wait(SEC_2);

} // end main

Exercise

1.1 Modify helloHtAngleSensor1_0.nxc to reflect the following reference frame: 0 degrees is

when the pendulum is horizontal (i.e. 3 o’clock position), 90 degrees is 6 o’clock and 180
degrees is at 9 o’clock.

Damped Compound Pendulum – System ID Experimental and Simulation

© Copyright Paul Oh

1-2: Capturing Pendulum Data and identifying characteristic equation

Step 1: Download and compile helloHtAngleSensorSaveToFile1_0.nxc

The code helloHtAngleSensorSaveToFile1_0.nxc measures elapsed time and writes
captured angle data to a file named myAngleData.csv.

Step 2: Execute helloHtAngleSensorSaveToFile1_0.nxc. Calibrate the pendulum such
that 0 degrees is when the pendulum is hanging down motionless (i.e. 6 o’clock position). Then,
rotate the pendulum counter-clockwise to the 3 o’clock position (i.e. about 90-degrees in our
original reference frame).

Step 3: From Bricx NXT Explorer, copy the capture angle data (myAngleData.csv) to your
computer. Use Excel to line plot a graph of angle [deg] (y-axis) over time [sec] (x-axis). Fig 1-2A
shows an example

Fig 1-2A (left) is a classic example of a 2nd order dynamic system. At around 3 seconds, the
pendulum is moved from 0-degrees to about 90-degress and then released. At about 16
seconds, the pendulum is motionless, settling at 0-degrees.

Theory: One can recall that a 2nd order dynamic system is characterized by the ratio of
subsequent peaks and the period. All second order systems have the following form:

ሷߠ ሶߠ߱ߞ2 ߱ଶ ൌ 0

Where there are 2 relationships:

݈݊
ܽ
ܾ
ൌ

ߨ2ߞ

ඥ1 െ ଶߞ
ൌ
1
ܰ
݈݊ ଵܺ

ܺேାଵ

ߨ2
ܶ
ൌ ߱ඥ1 െ ଶߞ

Fig 1-2A (right) is a close up of the time response and identifies the following: ܽ ൌ 87, ܾ ൌ
62,	and	ܶ ൌ 1.42	sec. Substituting these values into (2A), one has:

Fig 1-2A: Time plot of pendulum angle in degrees (left). A close up of the time plot (right)

(1)

(2A)

(2B)

Damped Compound Pendulum – System ID Experimental and Simulation

© Copyright Paul Oh

݈݊
87
62

ൌ 0.34 ൌ 	
ߨ2ߞ

ඥ1 െ ଶߞ

ቀ0.34ඥ1 െ ଶቁߞ
ଶ
ൌ ሺߨ2ߞሻଶ

Solving for ߞ one has 0.11ሺ1 െ ଶሻߞ ൌ ଶ or 0.11ߨଶ4ߞ െ ଶߞ0.11 ൌ :ଶ or ultimatelyߞ39.5

ଶߞ39.61 ൌ 0.11	or	ࣀ ൌ .

Substituting the damping ratio ߞinto (2B), yields the following

ߨ2
1.42

ൌ ߱ඥ1 െ 0.053ଶ

4.42 ൌ ߱√0.999		or	࣓ ൌ .

Substituting (3A) and (3B) into the general 2nd order dynamic equation (1) yields

Recall, that the general solution for (4) is given by

The complex roots are given by

Substituting the values from (3A) and (3B) into (5B), that for the system captured in Fig 1-2A:

ଵ,ଶݏ ൌ െሺ0.053ሻሺ4.42ሻ േ ݆߱ඥ1 െ ଶߞ

ଵ,ଶݏ ൌ െ0.23 േ ݆4.42√0.997

ଵ,ଶݏ ൌ െ0.23 േ 4.41݆

From (6) one sees the real part of the complex roots is negative. Thus (5A) yields an
exponentially decaying response; small values mean long settling times. The amplitude of
oscillation is governed by imaginary values of the complex roots.

(3A)

(3B)

ሷߠ 2ሺ0.053ሻሺ4.42ሻߠሶ ሺ4.42ሻଶ

ሷߠ ሶߠ0.47 19.5 ൌ 0

(4)

 2
2

2
1 1sin1cos)(tAtAet nn

t
c

n

2
2,1 1 nn js

(5A)

(5B)

(6)

Damped Compound Pendulum – System ID Experimental and Simulation

© Copyright Paul Oh

Concept 2 System Modeling (Simulation)

Experimentally, the system’s dynamics were captured and identified; Fig 1-2A and the equations
above served to reveal the system’s inherent (i.e. natural) characteristics. Equations (3A) and
(3B) give us the pendulum’s damping ratio and natural frequency respectively. One can now
build a model to do a “sanity check” of the system that was identified.

There are many simulation tools on the market. Simulink (which is a Matlab toolbox) is a
commercial package. Xcos (which is included in Scilab) is an open-source version.

Recall from (1) and (4), one has:

ሷߠ ൌ െ2߱ߞߠሶ െ ߱ଶ

In Simulink (or Xcos) one can generate the following model:

Exercise

1.2 Capture the time response of your motorized damped compound pendulum. Capture

your plot (similar to Fig 1-2A left).

1.3 From your plot, identify the height of consequent peaks, and the time between peaks.
Use these to calculate the damping ratio ߞand natural frequency ߱for your system.

1.4 From your damping ratio and natural frequency, calculate the characteristic equation i.e.

(4) and the roots i.e. (6)

(7)

ሷߠ ൌ െ ሶߠ0.47 െ 19.5 (8)

Fig 2-1A: Xcos implementation of damped compound pendulum Equation (7)

Damped Compound Pendulum – System ID Experimental and Simulation

© Copyright Paul Oh

Executing the simulation of the model, one sees the damped compound pendulum’s time
response e.g. Fig 2-1B.

Fig 2-1B: Xcos simulation of pendulum time response (left). Contrast to experimentally captured
response from Fig 1-2A shown again (right). Model appears to match experimental system closely

Exercise

2.1 Implement your model (i.e. damping ratio, natural frequency and initial angle) in Simulink

(or Xcos) i.e. Replicate your own version of Fig 2-1A.

2.2 Execute the simulation of 2.1. Contrast the resulting plot (e.g. Fig 2-1B left) with your
experimentally captured plot (e.g. Fig 2-1B right). From the simulation plot, show that the
peak values and period are the same (or different) as your experimental plot.

