
NXT Whip (Wheeled Inverted Pendulum) – Last updated 10/23/15

© Copyright Paul Oh

Hands-on Lab

WhIP: Wheeled Inverted Pendulum

WhIP is an NXT-based 2-wheeled inverted pendulum that is analogous to the Segway
transporter. WhIP applies PID control to maintain balance. A HiTechnic NXT gyro is used to
measure the body’s state (angular velocity and calculated angle). Wheel state (position and
velocity) is then actuated to counter-act changes in the body angle. The next effect is that there
are 2 degrees-of-freedom (body and wheel positions and velocities) which are controlled to
maintain balance.

Preamble: Gyro Bias and Compensation

Gyros measure angular velocities. These velocities can be integrated to compute angles. Thus a
gyro mounted on the body can serve to provide ߠ (body angle) and ߠሶ 	(body angular velocity).
Computing an angle by integrating gyro data is notoriously subject to drift. Failure to compensate
for drift will result in ߠ growing over time.

Step 1: Calibration – computing gyro offset

Refer to program whipGyroCali1_0.nxc. HiTechnic’s documentation says that their NXT gyro
must be calibrated to compute an offset value. Computations are achieved by sampling the gyro
and then calculating the average.

Figure: WhIP coordinates and degrees-of-freedom

x'

z

z
b

z
l,r

p

Rw

Lp = H /2p

l,r

x

y

z

x'

Left W
heel

y

Rw

x
b

b
y Wp /2

xxl

y
l

y
r

rx

Isometric View Side View Top View

 sumOfAllRawOmegaReadings = 0.0; // zero because haven't added readings yet
 totalCounts = 0; // counts number of times gyro is read
 curTick = CurrentTick(); // start timer
 while (CurrentTick() < (3000 + curTick)) {
 rawOmega = SensorRaw(GYROPORT); // HiTechnic gyro returns long
 Wait(150);
 totalCounts = totalCounts + 1;
 sumOfAllRawOmegaReadings = sumOfAllRawOmegaReadings + rawOmega;
 PlayTone(TONE_B7, 5); // 5 ms chirp
 }
 omegaBias = sumOfAllRawOmegaReadings / totalCounts;

NXT Whip (Wheeled Inverted Pendulum) – Last updated 10/23/15

© Copyright Paul Oh

Step 2: Lay WhIP flat (and hence motionless) and execute whipGyroCali1_0.nxc

Step 3: Rename whipGyroCali1_0.nxc to whipGyroLowPass1_0.nxc and save.
Implement a low-pass filter as follows:

Step 4: Execute whipGyroLowPass1_0.nxc and observe the resulting angle measurements

Concept 1: WhIP PID control

Step 1: Download whip112612.nxc, compile and execute it. In brief, the program does the
following:

Observation: The WhIP is motionless (i.e. gyro is stationary) but running whipGyroCali1_0.nxc
shows that integration of the gyro’s angular velocity measurements yields ߠ increasing (i.e. drift).

#define LOWPASSFILTER 0.005 // constant for low-pass filter
// Value should be less than 1.0. Small values mean that previous value
// of omegaBias (i.e. gyro bias) is weighted more.

// adjust gyro bias due to drift
 omegaBias = rawOmega*LOWPASSFILTER + (1.0-LOWPASSFILTER)*omegaBias;
 bodyOmega = rawOmega-omegaBias; // [deg/s]
 intOmegaBias = omegaBias;

Observation: A low-pass filter blocks high frequencies. The expectation is that gyro values will not
change radically during run-time. As such, the compensated signal is a weighted sum of old values
(which should not change much) and the newly acquired incoming signal.

Figure 1-1: WhIP flowchart

NXT Whip (Wheeled Inverted Pendulum) – Last updated 10/23/15

© Copyright Paul Oh

Concept 2: Multi-Threading

Multi-threading allows multiple processes to execute simultaneously. In previous lab programs,
there was a single process – it was called main(). NXC provides the ability to add processes,
so that they run at the same time as main(). The function Follows() is used for this purpose.

Simultaneous execution of processes is often desired so that they don’t bog down each other. For
example, one can create processes called whipBalance() and ultrasoundResponse().
The former keeps the WhIP balanced, while the latter polls the ultrasonic sensor.

Step 1: Mount an ultrasonic sensor on your WhIP. Connect to Port 4.

Step 2: Download whip102315.nxc, compile and execute it.

Note that main() has far fewer statements than whip112612.nxc. Much of the code,
especially the PID components have been moved to a process called task whipBalance().
Also, a process called task ultrasoundResponse()has been added. This process polls the
ultrasonic sensor and plays a tone if the sensor detects objects within a specific range.

Once main ends, then the processes whipBalance() and ultrasoundResponse()
commence. The processes run endlessly until the WhIP falls down. After falling down, the NXC
function StopAllTasks() is called to kill all running tasks, and thus shuts down the motors.

Exercises: There are 4 gains: KGYROSPEED (body proportional gain), KGYROANGLE (body
integration gain), KPOS (motor position gain), and KSPEED (motor derivative gain)

1-1 Set KGYROANGLE to 0 (keeping all other gains fixed at their default values). Note

observations: does WhIP translate much? Does WhIP shake a lot? Increase
KGYROANGLE and note observations.

1-2 Set KGYROSPEED to 0 (keeping all other gains fixed at their default values). Note
observations: does WhIP translate much? Does WhIP shake a lot? Increase
KGYROSPEED and note observations.

1-3 Set KPOS to 0 (keeping all other gains fixed at their default values). Note observations:

does WhIP translate much? Does WhIP shake a lot? Increase KPOS and note
observations.

1-4 Set KSPEED to 0 (keeping all other gains fixed at their default values). Note observations:

does WhIP translate much? Does WhIP shake a lot? Increase KSPEED and note
observations.

Exercises: Mount an ultrasonic sensor on your WhIP and

2-1 Examine task ultrasoundResponse(). Play different tones based on distance. For

example, play TONE_B3 for 0 <= usSensorValue <= 30; and TONE_A3 for 31 < =
usSensorValue <= 60.

