Laser Cutting 101

This lesson's coverage:

- What is a vector image?
- What is vector cutting?
- Running a Vector Cut
- Considerations
- Warnings
- Finding Optimal Vector Settings
- Other Tips and Tricks

What is a vector image?

- These are images determined by points, which are connected by lines and curves
- Lines and curves are defined mathematically
- Distinctly different from a raster image, made up of an array of colored points

What is vector cutting?

The laser uses a vector images lines and points to define paths for the laser head to follow.

- The laser marks continuous lines instead of points
- The lines are defined by size; not pixels
- These lines may cut through the material, or mark to a desired depth
- Our laser allows very precise power control on vector projects
- The laser also enables up to seven different layers

Running a Vector Cut

2 Ways to Send a Cut to RetinaEngrave

- Directly via File (uncommon for us)
- From a vector graphics program
- This example uses Inkscape for this cut
- Note the 2 colors

My common workflow goes as such:

- Design Part - Test Assembly
 - CAD Design

- 1:1 Drawing
- Export as .dxf, .pdf, .ai
 - CAD Drawing

- Adjust lines
- Change colors

Inkscape

- Order Colors
- Adjust settings

Print to RE

Align and Cut

Retina Engrave: Vector Cut

(Read manual for more depth)

There also exists a vector simulation mode. This allows you to preview the manner in which the laser will cut your item on the screen.

Retina Engrave: Vector Cut

(Read manual for more depth)

- Layers: Up to 7
 - Blue, Red, Magenta, Green, Cyan, and Yellow
 - That is 6; I recommend avoiding black for vector cuts
- User may decide order of cut with the Order setting
 - Laser cuts in numerical order (1, 2, 3...)
 - o In this case, Cyan is first
- Speed: decides how quickly the laser moves along lines
- **Power:** adjusts actual voltage applied to the tube
- Passes: how many times the laser head runs over that color
- Polylines: Number of curves defined in your drawing
- **Current**: Adjusts current applied to tube (for materials with different hardness)

Considerations

- The laser is now making long strokes in vector
- Heat is more quickly concentrated
 - More easily ignites material
- Kerf: The amount of material removed by a laser-cut line
 - ~0.24mm total kerf, centered on cut, depending on thickness of material
 - ~0.12mm each side

0.24mm kerf

0.12mm to the left

0.12mm to the right

This dimension was made 0.24mm larger to compensate for the kerf.

Optimizing Settings

ProLF 36x24

Estimate a settings range, and find the 2 settings that cut through your material the fastest at the lowest power.

Starting the Cut

- DO THE SAME LASER CHECKS AS FOR A RASTER JOB
- If you don't remember these, review LESSON 1
- Everything, besides the specific vector settings, can be done the same as with a raster etch job
 - Perimeter sweep
 - Starting the job
 - Focusing the laser
 - Material selection
 - o Etc...

Before Moving On

- This lesson is intended to be taught by someone that has gone through the tutorials and/or Laser 101 already.
- If you have not taken Laser 101 in person, please review my etching and vector tutorials (they have a bit more detail) at these links:
 - o Full Spectrum Laser Pro 36x24 Intro and Quick Start
 - Full Spectrum Laser Pro 36x24 Vector Cutting with Solidworks and InkScape

Assignment

The group will have 45 minutes. Material testing as a group is allowed. All other parts are individual.

- Create a vector drawing for a program
- Cut a "donut" out of a flat material
 - o 2 inch outer diameter
 - o 1 inch inner diameter
- Be as accurate as possible
 - Use calipers
 - o 1.995 2.005 inches outer diameter is within range
 - o 0.995 1.005 inches is within range as well
- With practice, you should achieve results within +/- 0.003"

