

First, the three lower joint angles of L4, L5, and L6 are
solved for, and then the three upper joint angles of L1, L2,
and L3 are solved for. The solutions are as follows:

84 = atan2(±real(������- Cl), C4),

C
_ (p� + lL5)2 + p� 2 + p� 2 - 11,3 - 114 . 4 - 21L31L4 '

85 = wrapToPi(atan2(-p�, ±real(V,.... (p
-
�
-

+
-
I
-L-
5

-
)2

-
+
-

p
-
�
-2)

-1/;),

1/; = atan2(S41L3, C41L3 + lL4);
86 = atan2(p�, -p� - lL5) ;

S2 = S6a� + C6a�,

82 = atan2(S6a� + C6a�, ±real(������- (S6a� + C6a�)2));
81 = atan2(S6s� + C6S�, S6n� + C6n�);

C2S1 = S6S� + C6S�,
C2C1 = S6n� + C6n�;

83 = wrapToPi(8345 - 84 - 85),
8345 = atan2(a�, C6a� - S6a�).

If C451L3 + C5lL4 ���\ 0 then 86 = wrapToPi(86 + 71") . If
C2 ���\ 0 then 81 = wrapToPi(81 + 71") .

We now have the inverse kinematic solution to the right leg.
The above solution can be applied to the left leg by changing
+IL1 to -ILl in the base-to-hip transformation matrix in (8).

Like the arm there are two solutions for 82, 84 and 85,
which generate eight total solutions to the leg IK. As with the
arm, if the goal position is outside the feasible workspace of
the limb the joint solutions will have imaginary parts and only
the real part is used.

�%��\���������!�������' �
�������"�' �������$�"�������'

For the inverse kinematics of each of the arms and the legs
there are eight joint solutions. The sum of squared joint values
is the primary metric that is used in picking one of the eight
solutions. Choosing the solution that minimizes this metric is
the solution that is "closest" to the zero position of the joints.
This works well if at least one of the solutions has all of its
joints values within the joint limits (Table IV).

If none of the solutions have all the joint values within the
limits then there is no solution that satisfies the desired pose
(orientation and location). To get the end-effector to a position
as close as possible to the desired position the joint values in
all the solutions are capped at the closest joint limit value. Each
of the solutions are then given to the FK to calculate the end
effector location with the capped joint values. The solution
that gets the end-effector position the closest to the desired
position is used. If none of the joint solutions get the end
effector within 5 cm of the desired position then the previous
joint values are used.

III. IMPLEMENTATION

It takes more than just solving for the kinematics to actually
have Hubo do something meaningful. In this section we
describe various important considerations and algorithms that
are needed to implement teleoperation on Hubo.

4

TABLE IV. �2�8�/�7�?�\ �5�/�6�/�?�=�\�8�)�\�?�+�(�\���;�6�=�\���7�$�\�5�(�*�=�\

Arms Legs
Joint Left Right Left Right
i min. max. min. max. min. max. min. max.
I -2.0 2.0 -2.0 2.0 0 1.8 -1.8 0
2 -0.3 2.0 -2.0 0.3 0 0.6 -0.6 0
3 -2.0 2.0 -2 2.0 -1.3 1.4 -1.3 1.4
4 -2.5 0 -2.5 0 0 2.5 0 2.5
5 -2.5 2.0 -2.5 2 -1.3 1.8 -1.3 1.8
6 -1.4 1.2 -1.4 1.2 -0.3 0.2 -0.2 0.3

�����' �������' �������' �������' �	���%�����!���'�������������"�����!�'

The workspace of Hubo's arms is limited because the arms are
short. To increase the vertical workspace of Hubo's arms, Hubo
can use its legs to move its body up and down. Getting Hubo to
move its end-effector to a desired location that requires its body
to move up or down requires some form of inverse kinematics
for all 12 joints of each arm and leg pair (left and right). To
simplify this we assume that both hands will be working at
the same height level and have developed an algorithm that
uses the decouple inverse kinematics of the arms and the legs
as described in Section II. To summarize this algorithm, Hubo
keeps its hands at shoulder level and moves its body up and
down with its legs. If a desired pose is below or above the
points the body can be elevated to then the arms will move
down or up from the fully lowered or raised body positions.

The algorithm is as follows: (1) Get desired hand pose and
extract height information; (2) Use leg IK to move the shoulder
to as close as possible to desired height; (3) Use arm IK to
move hand to desired hand pose.

�����' �������"� ���'

Currently the motor control boards on Hubo only support
position control. The gains for this position control are ex
tremely high to deal with the external forces that the joints
may encounter. Due to these high gains, giving arbitrary joint
angles is not possible because the joint will move to the
position in a violent manner. Therefore, a feedback controller
algorithm is implemented using nominal maximum velocities
and accelerations in order to achieve fluid, safe motion. This
algorithm works by giving the motor control board for a given
joint a trajectory to follow from its current position to the
desired position that minimizes the jerk on the joints. This
allows for the joint to reach the desired position by accelerating
and decelerating in smooth fashion.

�����' �������������������'

In order to achieve any of these task, balancing is a necessary
reqirement. Four sensor values are used on Hubo to achieve
balancing. We obtain the angles, ¢x and ¢y, about the x- and
y-axes that the waist is at relative to the vertical z-axis from an
inertial measurement unit (lMU) in his waist, and the moments,
Mx and My, about each ankle from the force/torque sensors
in the feet. Often, when a humanoid plants its feet on the
ground it creates a closed loop, which in turn can result in
dangerously high torques if the feet happen to slide or shift
relative to each other while still on the ground. This can cause
the motors to draw extremely high current and potentially
burn the motors out. One instance when this is an important
consideration is when first placing the robot on the ground. If

its feet are not both parallel to the ground, and the ankle motors
are being used for balancing, then this phenomenon can arise.
To avoid this problem we devised a method to even out the
feet and then balance such that the ankle motors comply with
the moments Mx and My, but resist the IMU angles cPx and
cPy. We achieve this by setting the compliant term for the ankle
angular velocities equal to a gain multiplied by the moment,
and the resistive term equal to a gain multiplied by the IMU
angle. Thus, the ankle angular velocities are

Wroll = KrcPx - KcMx,

Wpitch = KrcPy - KcMy,

(11)

(12)

where Wroll and Wpitch are the angular velocities of the ankle
roll and pitch joint motors, respectively, and Kr and Kc are
the resistive and compliant gains, respectively. These angular
velocities are sent to the feedback controller as inputs. For our
gains we chose Kr = 0.009 and Kc = 0.0015. These gains
work very well, but in order to take into account added weight
to the robot, from tools or objects it is holding, the force in
the negative z-direction could be factored into the equation so
that the complaince gain would be inversely proportional to
the weight.

�#���\ �����������������"�������'

To control the arms of the Hubo robot via teleoperation a
Polhemus FASTRAK motion tracking device is used, which
utilizes 6-DOF sensors. FASTRAK provides three position val
ues and three orientation values of a small sensor relative to a
reference frame as it moves through space. These readings are
given in real time with virtually no latency (4 ms). FASTRAK
allows for up to four sensors to be used simultaneously. To
control both of Hubo's arms two FASTRAK sensors are used
that map the pose (location and orientation) of a human user's
hands to the pose of Hubo's hands. Thus, this allows for real
time teleoperation of Hubo's hands by a human operator.

The FASTRAK system returns homogeneous transform
matrices of the sensors' respective poses for each instance
in time. To obtain calibrated relative position readings of
the operator's hands the first sensor readings are used as
offset location values used to correct all proceeding sensor
readings. These corrected transformations are given to the
inverse kinematics algorithm to get Hubo's reference joint
values. These joint values are fed in to the joint control
algorithm, which moves Hubo's hands to the same relative
pose as the operator's hands.

IV. EXPERIMENTAL SETUP

A task that our team is focused on is cutting through walls.
These potential abilities give humanoid robots a large ad
vantage over mobile ground robots during search and rescue
missions in hazardous environment. To show that Hubo is
capable of using power tools to cut through a wall we have
equipped Hubo with a cordless, straight-handled drill, see
Fig. 3. Using this drill we demonstrate that Hubo can cut
through a cardboard wall. In this setup the middle of the
drill bit is the location of the end-effector coordinate system
with the x-direction pointing out the end of the drill bit. The

5

transformation from the hand
effector with the drill is

coordinate frame to the end-

6 [yc�scP �
TE = . '" 0 -sm,/-,

o 0

sincP
o
coscP

o

where cP = 1f/4 and IE = 10 cm.

(13)

In order for the drill to be the most effective at cutting
through the cardboard the drill bit should be orthogonal to the
surface. This means the drill bit should have an orientation
that is aligned with neck coordinate frame of the robot given
that the robot is standing square to the wall. The workspace in
both the vertical and horizontal directions of the end-effector
is limited to this orientation. The limitation in the vertical
direction is less of a concern because the legs can be used
to move the entire body of Hubo up and down as described in
Section III-A. The size of this workspace changes for different
distances in front of Hubo. In order for Hubo to cut the largest
hole possible we want to find the distance that Hubo should
stand from the wall that maximizes the horizontal workspace
of the end-effector with the desired orientation.

Fig. 3. Drill end-effector coordinate frames

To find this optimal distance simulations were performed
to map the workspace of the end-effector. The results of
these simulations are shown in Fig. 4. It was found that
a distance of 484 mm from the neck to the wall gives
the largest horizontal workspace at 390 tmn. This is at a
vertical distance of 75 mm above the neck coordinate frame.
The joint values for the extreme points in the horizontal
direction are the following: far right (minimum y value)
�S�\= [-0.9914, -0.3651, -0.8339, -1.1618, -1.6542, 0.8894]
and the far left (maximum y value) �S�\

[-1.1853, 0.1213, 1.1383, -1.2893, -1.8826, -1.1184].

The orientation of the drill is set to have the drill bit
orthogonal to the wall. In addition, the distance from the
wall is also set to give the maximum horizontal workspace.
Therefore, using teleoperation via FASTRAK to control the
orientation and the distance in the x-direction is not possible.
The teleoperation in this case only defines the displacement in
the y-direction and the z-direction.

In this experiment the wall is made from cardboard and
is set 48 cm in front of Hubo. A human operator controlling
Hubo via FASTRAK cuts a rectangular hole in the cardboard
wall. Both the input from the human is recorded as well as
the actual end-effector location. The results are discussed in
the next section.

