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Abstract— This paper describes the hardware and software
components of a general-purpose humanoid robot system for
autonomously driving several different types of utility vehicles.
The robot recognizes which vehicle it is in, localizes itself with
respect to the dashboard, and self-aligns in order to interface
with the steering wheel and accelerator pedal. Low- and higher-
level methods are presented for speed control, environment
perception, and trajectory planning and following suitable for
operation in planar areas with discrete obstacles as well as
along road-like paths.

I. INTRODUCTION

As part of the recently concluded DARPA Robotics Chal-
lenge (DRC) trials [1], contestant robots needed to carry
out a number of navigation and manipulation tasks. These
tasks were meant to represent a set of skills sufficient for a
robot to move from the edge of a disaster zone such as a
damaged nuclear power plant to its interior, where it could
assess and possibly repair critical systems. The Vehicle stage
of the challenge [2] called for the robot to drive a golf-cart-
like utility vehicle around obstacles to a target location, get
out, and walk away (aka egress).

In this paper we present techniques for autonomously driv-
ing several different utility vehicles using a humanoid robot
(the DRC-Hubo robot and specific vehicles are described
in Sec. II). These methods were developed using a robot
entered in the 2013 DARPA DRC trials, but this is not a
description of our approach to the Vehicle task there. At the
competition, we used a pure tele-operation approach tuned
specifically for the course and low-bandwidth conditions
described in the rules [3]. Here we describe a more general
set of autonomous skills for driving such vehicles in a variety
of static environments.

Autonomously-driven vehicles of course have a long his-
tory [4], [5], [6], [7], [8] with prominent milestones at the
2005 DARPA Grand Challenge (DGC) [9] and 2007 DARPA
Urban Challenge (DUC) [10], [11]. Since the DUC, much
progress in the field has come in the industrial sector as au-
tomobile manufacturers and Google have extensively refined
and tested driverless car technologies [12] and in some cases
begun to offer them as safety options on production vehicles.
These vehicles are effectively robots, but there are a number
of significant differences between them and humanoid robots
with respect to the structure and difficulty of the driving task.

First, when driverless car technologies are embedded in
full-size vehicles, weight, size, and power limitations on
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Fig. 1. DRC-Hubo in Polaris vehicle. (Top) Close-up during indoor testing;
(bottom) At 2013 DARPA DRC trials (image courtesy of IEEE Spectrum
Magazine)

the sensors and computers used are not severe. In contrast,
the budget for all of these categories is quite limited on a
battery-powered humanoid which must worry about balance
for walking and maintaining adequate current to all of its
joint motors. Moreover, sensor and robot geometry choices
cannot be made solely to optimize driving performance,
as the point of a humanoid robot is versatility. All design
decisions impacting driving must be considered jointly with
other critical tasks, which for the DRC included walking,
stair/ladder climbing, and power tool and door handle ma-
nipulation.

Second, achieving adequate sensor coverage (i.e., “blind
spot” elimination) on integrated driverless car systems is
generally just a matter of arraying enough fixed cam-
era/sonar/ladar/radar units around the vehicle periphery and
on its roof. Conversely, many parts of the road scene are
inherently occluded from a humanoid robot inside a vehicle
even with omnidirectional sensors on its head. And since
the weight/space budget mentioned above makes fewer sen-
sors more desirable and therefore less complete coverage
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(a) (b)

Fig. 2. (a) DRC-Hubo, (b) Sensor head photo detail and CAD model in
ROS rviz [18]

unavoidable, the robot must carry out view planning to decide
where to “look” depending on what it is doing from moment
to moment.

Finally, the current generation of driverless cars are typ-
ically drive-by-wire, making motion control (steering, ac-
celeration/braking, and shifting) and vehicle state feedback
(speed, steering angle, engine temperature, and so on) trivial
to implement and basically error-proof. Although there are
specialized machines for actuating steering, acceleration,
braking, and gear shifting from the driver’s seat with no
permanent vehicle modifications [13], [14], [15], these take
considerable time to set up and calibrate and have no other
mobility, manipulation, or perception abilities. On the other
hand, a humanoid robot manipulating the steering wheel
and pedals is a mechanical system that must self-align, self-
stabilize, and monitor for slips and other mishaps. Further-
more, vehicle state variables are not accessible by the robot
through simple function calls; rather, they must either be
visually read from the dashboard display or inferred from the
robot’s own sensors and transformed into the vehicle frame.

The main contribution of this paper is a demonstration of
the feasibility of a general-purpose humanoid robot driving
an unmodified vehicle. The only previous work we can find
on humanoid robot vehicle handling is [16], [17], in which
an HRP-1 drove a modified forklift and a backhoe, but all
control was via tele-operation using a video feed. Here we
present a set of perceptual and physical methods which are
sufficient to (1) interface the robot with different vehicles
such that it can reliably accelerate, stop, and steer them
as commanded; and (2) perform simple sensing and motion
planning while driving given its limited and often occluded
views.

II. EQUIPMENT

A. DRC-Hubo

Our robot, based on the earlier-generation KAIST Hubo
2+ [19], is pictured in Fig. 2(a). It is 1.40 m tall with a

(a) (b)

Fig. 3. Vehicles driven: (a) Club Car DS and interior detail; (b) Polaris
Ranger XP900 and interior detail. The windshield on the Club Car and the
side netting on the Polaris were not present for the experiments reported
here. The loose wires in the interior images are part of wireless e-stops
added to the vehicles.

wingspan of 2.04 m, weighs 60 kg, and has N = 33 degrees
of freedom (DoF): 1 in the waist, 6 per leg, 7 per arm, 1 in
the left hand fingers, 2 in the right hand fingers, and 3 in the
neck/sensor head. Three fingers on each hand close together
via one motor for power grasps, and on the right hand there
is an additional “trigger” finger which moves independently.
Each hand also has a peg opposite the palm/fingers side
(short versions are shown in Fig. 2(a) and longer ones in
Fig. 5) which can be used as a point contact when the robot
is in a quadrupedal walking mode. We have also found them
useful as essentially rigid fingers for gross manipulation tasks
such as turning the steering wheel, explained in Sec. IV-A.

The sensor head on the robot, shown in Figs. 2(a) and (b),
was designed and built by us. It pans ±180◦ and tilts ±60◦

without self-collision, and has the following sensors which
are relevant to this work:
• 3 × Pt. Grey Flea3 cameras, each with about a 90◦×

70◦ field of view (FOV), forming a synchronized stereo
rig with baselines of 6 cm, 12 cm, and 18 cm.

• Hokuyo UTM-30LX-EW laser range-finder which
scans at 40 Hz over a 270◦ FOV at an angular resolution
of 0.25◦. The minimum detectable depth is 0.1 m and
the maximum is 30 m, and intensity-like reflectance
information is provided for each point. The Hokuyo is
mounted on a dedicated tilting servo which has a range
of ±60◦ for point cloud capture

• Microstrain 3DM-GX3-45 IMU with 3-axis ac-
celerometer, 3-axis gyro, and GPS receiver/antenna

B. Vehicles

Two different utility vehicles, shown in Fig. 3, com-
prise the set of known vehicles V used for this work: an
electric Club Car DS and a gas-powered Polaris Ranger
XP900. Common features of these vehicles which distinguish
them from passenger cars are an open cabin with the roof
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Fig. 4. Orthographic projection of major coordinate frames (vehicle shown
is CAD model of Polaris from Gazebo simulator). The sensor head
frame moves with the robot. Throughout this paper we use the ROS [18]
convention for coordinates of +X forward, +Y left, and +Z up.

supported by relatively thin pillars; and a bench-like front
seat and no center console, making movement between the
passenger’s and driver’s side during ingress/egress possible.
However, there are some key geometric differences. The
Polaris is larger overall, and it has a bump on the floor cov-
ering the drive shaft, visible in Fig. 3(b). Driving disparities
(different steering ratios, implications of electric motor vs.
gas engine, etc.) are discussed in Sec. IV-C.

III. INTERFACING

In the 2013 DRC trials Vehicle task [2], humans were
allowed to set the robot up inside a vehicle in a drive-ready
posture Xdrive rather than having it attempt to approach the
vehicle, step up, and seat itself (aka ingress). By posture we
mean the complete robot state which combines its joint state
Θ = [θ1, θ2, . . . , θN ] and its pose P = [x, y, z, α, β, γ] in the
vehicle interior frame.1 For DRC-Hubo this posture,
an example of which is pictured in Fig. 5(a), consists of:
(a) the robot’s torso offset to the right of the steering wheel;
(b) its left hand peg inserted between the steering wheel
“spokes”; (c) its right hand resting on its lap or grasping
a vehicle support structure; and (d) its left foot near the
accelerator pedal with its right foot flat on the floor.

This general posture works well for a variety of different
utility vehicles, but it must be parametrized by the geometry
of each vehicle in terms of steering wheel height off the
floor, tilt, radius, and spoke arrangement; roof pillar spacing,
angle, and cross-sectional shape/thickness; lateral location
of accelerator; and so on. Thus, each drive-ready posture
is specific to a vehicle v: Xv

drive = {Θv
drive,P

v
drive}, and

renderings of these are shown for each vehicle in V in
Fig. 5(b) and 5(c).

Manually placing the robot in Xv
drive with adequate pose

precision is a time-consuming and strenuous task, and of
course it requires a human to specify which vehicle the
robot is in. Therefore, we modify the robot insertion process
to make it both faster and vehicle-independent. To do so,

1This frame, shown in Fig. 4, is convenient for robot motion planning
inside the vehicle. Its origin is the intersection between the front of the
seats, the floor, and vehicle centerline.

(a)

(b) (c)

(d) (e)

Fig. 5. (a) Top view of a drive-ready posture in Polaris vehicle; (b)
Xclubcar

drive in OpenRAVE simulation [20]; (c) Xpolaris
drive

in OpenRAVE; (d,
e) Neutral joint state Θneutral in Club Car and Polaris (exact pose is not
required)

we assume that a high-resolution 3-D point cloud Cvdash of
the dashboard2 of each vehicle v ∈ V , aligned with the
vehicle interior frame, is available as a reference for
the robot. The dashboard reference clouds used here (shown
from different views in Fig. 8 and Fig. 9) were acquired by
the ladar on the sensor head tilting at 1◦/s, voxelized to
0.025 m resolution, trimmed of all background features, and
are XY Z only.

Autonomous interfacing works as follows:

(1) The robot is placed (or arrives on its own) in the pas-
senger seat in a neutral/vehicle-agnostic sitting position
Xneutral, illustrated in Fig. 5(d) and 5(e) for each ve-
hicle. The passenger side is advantageous kinematically
for steering and entering on that side avoids collision
issues with the steering wheel.

(2) The robot obtains a 3-D point cloud/image capture

2We define the dashboard loosely as the portion of the vehicle interior
vertically above the floor and below head height; and longitudinally between
the front of the seat and the beginning of the hood. The entire steering wheel
assembly is included.
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Fig. 6. One cycle of scooting motion as robot moves from neutral to
drive-ready position, simulated for the Club Car in OpenRAVE

Cneutral of the rough dashboard area in front of it in
order to infer the vehicle v̄ it is in.

(3) It precisely estimates its initial pose within the vehicle
Pv̄
neutral by registering Cneutral to the reference Cv̄dash.

(4) It formulates and executes an interfacing plan to move to
Xv̄
drive. The leftward movement on the seat to reach the

drive-ready posture is a stereotyped quadrupedal motion
which we call “scooting”. After each motion cycle, one
of which is shown in Fig. 6, a new point cloud is scanned
and step (3) is repeated to decide how far to move or to
stop.

A. Vehicle recognition

From any pose inside or near the vehicle, the robot obtains
a point cloud of the dashboard region Cneutral by scanning
the sensor head ladar as detailed above for the creation of
the reference clouds. Examples of such clouds taken from
different locations and angles in both vehicles are shown in
Fig. 8(a-f) and Fig. 9(a-c).

Recognizing the current vehicle by matching Cneutral to
one of the “templates” {C1

dash, . . . , C
|V|
dash} is a shape re-

trieval/classification problem [21], [22], [23], [24]. However,
the 3-D relief of the two dashboards is similar enough that
the error after performing a fit to each reference cloud is
not a reliable match indicator. Instead, we exploit the size
discrepancy between the vehicles to discriminate them. In
particular, the Polaris dashboard is about 0.35 m wider,
so after doing a robust vertical plane fit to Cneutral, the
maximum lateral distance between inliers can be thresholded,
following techniques we described in [25], to infer v̄. An
alternative method to estimate the width is to first detect the
roof pillars, which form parallel, nearly vertical cylinders in
Cneutral. In Sec. III-B we do the equivalent with a single
level ladar scan.

B. In-vehicle localization

Believing it is in v̄, the robot currently has two ways of
estimating its pose Pv̄ relative to vehicle interior.
The first way, which takes several seconds, is to perform
a RANSAC-style [26] robust registration of Cneutral and
Cv̄dash. Briefly, a minimum set of correspondences to compute
a rigid transform [R|t] between the two point clouds are
repeatedly chosen at random, and the number of inliers cal-
culated for each sample. The transform with the most inliers
after a maximum number of iterations is then estimated
using a least-squares fit. In order to improve the quality of

(a) (b)

Fig. 7. (a) Peg-in-wheel method for steering (Polaris); (b) Foot arrangement
for pedal control (Club Car)

point correspondences, feature signatures are calculated to
aid matching. We use the Point Cloud Library’s (PCL) [27]
Sample Consensus Initial Alignment with Fast Point Feature
Histograms (FPFH) [28] to perform this step. The initial
aligning transform is then refined using Iterative Closest
Points (ICP) [29].

Another, much faster but only partial technique for es-
timating the sensor head pose works with a single approxi-
mately level ladar scan. Assuming the robot head is above the
height of the dashboard, this scan slices through the vehicle
roof pillars, which form two tight clusters. After removing
points more than a few meters away, there may still be some
objects inside the vehicle (such as the steering wheel or
the robot’s own hands), so the robot does Euclidean cluster
extraction [27] with a small maximum cluster size. All
cluster pairs are then checked for 2-D geometric feasibility
(distance, angle, etc.), and the most likely feasible pair is
used to extract the sensor head yaw and tx, ty .

IV. DRIVING

We make several important assumptions about the state
of the vehicle when the robot begins interfacing: (1) It is
powered on or the engine is running; (2) It is in forward mode
(Club Car) or drive gear (Polaris); (3) The tires are straight
and therefore the steering wheel’s orientation is known.

The drive-ready positions depicted in Fig. 5 for the Club
Car and Polaris show the robot’s right hand resting on its
lap and grasping a roof pillar, respectively. At the very low
speeds we have currently tested, forces on the robot due to
vehicle dynamics are small and therefore active bracing is not
required in either vehicle. Grasping is essential for the stages
of ingress/egress in which the robot transitions between the
vehicle exterior and interior, but they are outside this paper’s
scope (more details can be found in [30]).

A. Steering actuation and sensing

The robot turns the steering wheel by dialing: it moves
its left hand in a circular trajectory with the peg inserted
between the steering wheel spokes as shown in Fig 7(a). This
motion was chosen over holding the wheel in the traditional
manner because it has no singularities, avoiding the necessity
of regrasping when turning through large angles. The lack of
a slip ring in DRC-Hubo’s wrist roll joint precludes grasping
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the center of the wheel and turning it directly (the method of
autopilots such as [14], [15] and several 2013 DARPA DRC
trials teams).

The ideal steering trajectory is determined by the steering
circle center, radius, and tilt angle. It is predetermined for
each drive-ready position but can be reparametrized from
sensor data. The arm joint trajectories for the peg to trace
the circle are generated by approximating it with a polygon
(the circle is discretized at 30◦ intervals here), solving the
inverse kinematics offline for each vertex to make a look-up
table, and linearly interpolating arm joint angles online for
steering hand angles between the vertices. Using this method
the robot can move its hand and therefore the wheel in a
circle at up to |φ̇hand|max = 120◦/s.

A key limitation of this method is backlash: the robot
hand motion only causes steering wheel motion when it is
“pushing” one of the spokes—when the steering direction
is changed, there is a gap that the peg must cross before
engaging another spoke. As can be seen in Fig. 3, the
smallest (depending on which pair of spokes the peg is
inserted between) backlash angle βv for vehicle v is about
90◦ for the Polaris and 60◦ for the Club Car. Consequences
of the backlash are: (1) Additional bookkeeping in the
steering wheel controller, as the hand angle is not necessarily
the same as the steering wheel angle (aka φhand 6= φsteer);
(2) A delay to change the sign of the steering rate φ̇steer of
at least τβv

= φ̇hand/βv s; and (3) Inability to resist external
forces on the tires due to slope, bumps, etc. which might tend
to amplify the turning rate.

DRC-Hubo’s left arm joint encoder values and forward
kinematics are used to derive φhand, which with a known
initial steering wheel angle yields φsteer. This can be refined
somewhat by sensing contact between the peg and spoke
using a force-torque sensor in the wrist. Even with some
misalignment, given the current peg length there is no danger
of it slipping out of the steering wheel plane during motion.

B. Speed actuation and sensing

The robot affects the vehicle speed solely through varying
pressure on the accelerator pedal by changing its left ankle
pitch joint angle θLAP as shown in Fig 7(b), where θLAP =
0 indicates that the foot and lower leg form a 90◦ angle.
At the low speeds we have driven (≤ 2.5 m/s), a range of
θLAP ∈ [−35◦, 5◦] suffices (|θ̇LAP |max = 400◦/s). At θmin

LAP

the foot is not contacting the accelerator pedal and thus is
designated the stop angle. This “stopping by deceleration”
strategy is adequate because all vehicles in V coast to a stop
in a very short distance at such low speeds, even while still
in drive in the case of the Polaris. It is only a problem if the
vehicle tries to stop on a slope, which we have avoided in
testing.

Active braking is not implemented for several reasons.
In the current drive-ready position, the hip yaw required to
translate the left foot over to the brake pedal would violate
joint limits on DRC-Hubo. A two-footed approach (left on
brake, right on accelerator) is possible, but would require a
sitting position that is (a) less stable because of the narrower

stance, (b) not as good kinematically for steering, and (c)
more difficult to get into and out of without colliding during
the scooting phase described in Sec. III.

The estimated current vehicle velocity ṽ(t) is obtained
through stereo visual odometry [31], [32]. Specifically, we
use synchronized images from the sensor head’s 18-cm
baseline stereo camera pair taken at 15 Hz to compute a
frame-to-frame rigid transform with the libviso2 library
[33], constrain it to planar motion, and transform it into the
vehicle driving frame.

C. Motion control
The vehicle speed is controlled very simply. Given a target

speed vtargetx , the difference between it and the current
forward velocity component vtargetx −ṽx(t) is computed and
low-pass filtered as ε(t) to get a new pedal command:

θLAP (t+ 1) =


θmin
LAP if vtargetx = 0
θLAP (t) + ∆θLAP if ε(t) ≥ T
θLAP (t)−∆θLAP if ε(t) ≤ −T
θLAP (t) otherwise

(1)
where currently T = 0.5 m/s and ∆θLAP = 1◦.

There are currently two strategies for overall motion
control of the vehicle, detailed below.

a) Stop-to-steer: To remove the concerns from Sec. IV-
A about the limited turning rate achievable with |φ̇hand|max

and the backlash lag τβv on direction changes, the robot
is constrained to only turn the steering wheel while stopped.
This results in the vehicle following a Dubins path consisting
of circular arc and straight line segments, which may be the
original form of the motion plan or simply an approximation
of a more complicated trajectory, subject to a full stop
between each segment.

Suppose the current step i of an M -step plan (see Sec. IV-
D) calls for the stopped vehicle to traverse a segment with
curvature κi and arc length di. With Ackermann steering,
the steering ratio rv , wheelbase wv , and steering wheel
backlash βv of the vehicle imply a steering hand target angle
φtargethand = f(κi, rv, wv, βv), which is then executed. For high
κ, this may take several seconds to complete.

vtargetx is then set (1 m/s is the current default), and the
vehicle speed controller will slowly push down the pedal
until the vehicle begins to move and reaches its target speed.
As the vehicle moves, the forward motion component ṽx(t)
is integrated until di is exceeded, at which point vtargetx is
set to 0 and the next plan step i+1 is obtained. If at any time
during motion an imminent collision is detected because of
dynamic obstacles or deviation from the planned trajectory,
motion is also halted.

b) Continuous trajectory following: In this mode the
robot attempts to follow an arbitrary continuous trajectory
without stopping completely. We use a version of the cross-
track error steering controller from [9]. Modifying their
notation slightly to fit ours:

φtires(t) = Ψ(t) + arctan
ky(t)

vx(t)
(2)
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where Ψ(t) is the difference between the tangent to the
trajectory and the current vehicle heading, y(t) is the lateral
error between the vehicle centerline and the trajectory itself,
and k is a gain factor that governs how sharply the vehicle
attempts to return to the trajectory curve. The steering
command that is generated based on the difference between
the actual φsteer and the target one is damped to account
for the delay while the robot’s hand moves, and the target
vehicle speed is reduced in proportion to the turn magnitude.

D. Higher-level perception and path planning

There are manifold possibilities for driving perception
strategies, but for this prototype we follow [9] and other early
DGC participants and simply use the robot sensor head’s
ladar in a sweep configuration as its chief obstacle detector.
When not moving, the robot can obtain a point cloud of
the scene outside the vehicle with a single ladar sweep and
detect obstacles as outliers to a planar ground fit.

For more efficient storage and processing, ladar scan
points from the point cloud are inserted into a 3-D occupancy
grid—here we use OctoMap [34] with a minimum cell size of
0.2 m. The map is rolling—we are only concerned with what
is immediately in front of and around the robot, rather than
trying to build a full map of the environment it is traveling
through—so the occupancy grid is roughly 10 m on a side,
centered forward of the vehicle driving origin.

Each scan point can be annotated with relevant information
such as its intensity or obstacle/free classification before
insertion into the occupancy grid. In the latter case, this
leads to aggregation of multiple observations such that we
can get the freespace likelihood for each grid square. The
motion estimates furnished by the visual odometry module
are crucial in allowing the robot to reason about obstacles it
observed previously but can no longer see.

Projecting the current 3-D occupancy grid down to a 2-D
costmap allows the robot to generate a feasible trajectory to a
goal pose by calling a path planner such as the Search-Based
Planning Library (SBPL) [35], [36] which is aware of the
vehicle’s Ackermann motion constraints. Human operators
may also provide high-level plans to the robot by inspecting
the current obstacle costmap and supplying Dubins-like
segments to be executed via the stop-to-steer method of
Sec. IV-C.

A final perception and planning mode we have developed
is for path- or road-following. Following our methods for
trail-following detailed in [37], [38], we can track a path in
front of the vehicle by formulating a path likelihood function
which measures how well a low-dimensional path shape
hypothesis (width, lateral offset, relative heading, and cur-
vature) agrees with sensor measurements and continuously
optimizing it via particle filtering. The likelihood function
used here simply measures the proportion of ground fit
inliers to outliers taken from the costmap introduced above,
although more sophisticated appearance cues could easily be
incorporated. The centerline of the tracked path supplies the
cross-track error and path segment orientation needed for the
continuous trajectory following method in Sec. IV-C.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 8. Club Car dashboard registration for sensor head pose estimation.
(a-f) Hokuyo point clouds acquired from different poses, in sensor head
frame; (g, h) Views of estimated sensor head locations with respect to the
dashboard reference cloud and origin (all point clouds colored by X , grid
squares are 1 m)

(a) (b) (c)

(d) (e)

Fig. 9. Polaris dashboard registration for sensor head pose estimation. (a-
c) Hokuyo point clouds; (d, e) Views of estimated sensor head poses with
respect to reference cloud

V. RESULTS

Dashboard point cloud registration and sensor head pose
estimation results are shown for the Club Car in Fig. 8 and
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the Polaris in Fig. 9. Scans were captured from about 10
different locations for each vehicle along the driver-passenger
seat, with some slightly outside the envelope of the vehicle.
Some poses were quite close together or varied only by
orientation, so for clarity we have omitted these. On an
Intel Core i7-3930K processor at 3.8 GHz with 64 Gb of
RAM, the mean combined time of the FPFH and ICP stages
of dashboard point cloud registration for the Club Car and
Polaris data is about 5 seconds. This operation only needs
to be run a few times during interfacing, so the wait is not
unreasonable.

In all but one case, the results returned were very good,
and for that exception there was a roll error of about 10◦.
Because of the near-planarity of the Polaris dashboard refer-
ence cloud, there were some ambiguities due to symmetries
that were eliminated by enforcing some mild constraints on
the sensor orientation and position.

All steering and speed actuation methods described in
Sec. IV-A and Sec. IV-B have been extensively tested on
DRC-Hubo in both the Club Car and Polaris in a variety of
environments. Several versions of the stop-to-steer motion
control method from Sec. IV-C were demonstrated in the
Polaris in both indoor and outdoor environments, shown
in Fig. 1. A sequence from one of many indoor obstacle
avoidance tests with DRC-Hubo at the wheel, using human-
provided plan segments, is shown in Fig. 10.

The obstacle detection, mapping, search-based planning,
and continuous trajectory following methods from Sec. IV-
D have been demonstrated in an integrated fashion in
simulation (using ground-truth odometry). A snapshot of a
Gazebo simulation is shown in Fig. 11(a), with the generated
Octomap and planned trajectory several frames later shown
in Fig. 11(b).

The perception and path tracking algorithms have further
been validated offline using data collected with the sensor
head while driving manually 5+ km around campus and
golf course testing areas (samples pictured in Fig. 11(c)
and (d)). Steps of the pipeline from an area where the
vehicle was driven through a 3-point turn are represented
in Fig. 11(e). The two left images show the scene and
its corresponding point cloud, while the two right images
show the ground/obstacle segmentation and height-colored
Octomap of the point cloud, with the visual odometry-
derived motion estimate of the maneuver overlaid.

VI. CONCLUSION

This work is a preliminary demonstration of the feasibility
of humanoid robots driving vehicles, and much remains to be
done to make the system more practical, robust, and general.
Beyond more integrated live testing of continuous trajectory
following and path tracking, of immediate interest would be
adding skills to relax the assumptions in Sec. IV, including
turning the vehicle on/off with a key or switch and gear
shifting to allow reverse maneuvers in the motion planner.
Both of these would require more dextrous manipulation,
including force feedback, and visual analysis for hand-eye
coordination.

3800 5000

9000 115000

14100 15200

Fig. 10. Image sequence (with frame numbers) from sample successful
Polaris traversal of garage obstacle zone. Stop-to-steer tele-operation was
used.

There are no major barriers to extending the perception
and motion planning system to work in more situations by
using visual segmentation and detection of lane lines, signs,
and so on, as well as dealing with dynamic agents in the
environment. Adding more flexibility here would require a
full consideration of the view planning problem mentioned
in the introduction, as the robot would need to not only pan
and tilt the sensor head but possibly lean its torso in certain
situations to mitigate blind spots. Visual information would
also help with vehicle recognition within a larger set of
possibilities than the two examined here. With autonomous
ingress such recognition would likely occur outside the car,
but part detection and tracking inside the car could help speed
pose estimation and allow the reading of visual indicators
like the speedometer and gear state.

REFERENCES

[1] DARPA, “DARPA Robotics Challenge website,” 2013, available
at http://darparoboticschallenge.org. Accessed Decem-
ber, 2013.

[2] ——, “DARPA Robotics Challenge Vehi-
cle task description,” 2013, available at
http://darparoboticschallenge.org/node/159.
Accessed December, 2013.

[3] ——, “DARPA Robotics Challenge DRC Tri-
als Rules (Release 7),” 2013, available at
http://www.theroboticschallenge.org/files/
DRCTrialsRulesRelease7DISTAR22157.pdf. Accessed
December, 2013.

979



(a) (b)

(c) (d)

(e)

Fig. 11. (a) ROS Gazebo driving simulation; (b) Corresponding rviz
visualization of occupancy grid, plan generation, and trajectory following;
(c, d) Sample terrain in golf course data collection area; (e) Upper-left: golf
course scene; lower-left: dense stereo reconstruction with motion history
overlaid (vehicle stopped and reversed); upper-right: freespace/obstacle
segmentation after ground plane fit; lower-right: Octomap occupancy grid
colored by height
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