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Stability Control in Aerial Manipulation 

Matko Orsag, Christopher Korpela, Miles Pekala, and Paul Oh 

Ahstract- Aerial manipnlation, grasping, and perching in 
small nnmanned aerial vehicles (UAVs) reqnire specific control 
systems to compensate for changing inertial properties. Grasped 
objects, external forces from terrain objects, or manipnlator 
movements themselves may destabilize or otherwise alter the 
flight characteristics of small UAVs dnring operation resnlting 
in nndesirable ontcomes. Traditional control methods that 
assnme static mass and inertial properties mnst be modified 
to prodnce stable control of a qnadrotor system. T his paper 
presents work towards a control scheme to achieve dynamic 
stability of an aerial vehicle while nnder the inflnence of 
manipnlators and grasped objects. A qnadrotor with attached 
mnIti-degree of freedom manipnlators is implemented in simn­
lation and constrncted for testing. Compensation of the inertial 
changes dne to in-flight manipnlator movements is investigated. 
A control scheme is developed and resnlts are presented. 

I. INTRODUCTION 

Dynamically balancing robots with arms involve challeng­

ing control problems since the vehicle's base and manip­

ulators are often strongly coupled. The changing inertial 

properties of the arms, the impact of a grasped object, or 

environmental forces can be significant enough to warrant 

active reduction or compensation to maintain stability. Pre­

vious work with ground systems has shown that if vibration 

suppression control is not correctly handled it can lead to 

destabilizing effects [1]. Additionally, others have analyzed 

arm recovery motions to reduce the impact on a dynami­

cally stable base vehicle [2]. Similar work with humanoids 

has been done involving balancing during manipulation or 

grasping for added stability [3]. 

With the focus of dynamic stability on ground-based mo­

bile manipulators, little work has been done in aerial vehicles 

where arm or manipulator motions may lead to decreased 

stability. There have been recent attempts in aerial grasping 

using a I-DOF (degree of freedom) grasper or gripper [4], 
[5], [6]. Other groups have introduced gimbals [7], suspended 

payload [8], force sensors [9], or brushes [10] attached to 

quadrotors or duct-fan vehicles where the manipulator is 

used for contact inspection. The AIRobots consortium [11] 

is also developing service robots for use in hazardous or 

unreachable locations. Previous work from the authors has 
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Fig. 1: MM-UAV grabbing a block 

produced a prototype 3-arm aerial manipulator in addition to 

a miniature test and evaluation quadrotor emulation system 

[12], [13]. 

Compensating reactionary forces becomes critical and 

mandates a novel control architecture for both flight and 

arm dynamics. The reaction forces observed during arm 

movement and ground contact introduce destabilizing effects 

onto an already inherently unstable system. Recent advances 

in aircraft payloads and developments in light-weight arms 

signal a positive trend toward dexterous aerial manipulation. 

Payload limitations will most likely not represent the critical 

issue rather how arm trajectories and ground interactions 

produce forces and torques on the aircraft. 

This paper presents a stability control scheme and 

model for a mobile manipulating unmanned aerial vehi­

cle (dubbed MM-UAV). The manipulator kinematics and 

quadrotor model are described in Sections II and III. Stability 

analysis (Sec. IV) is performed on the model to develop 

permissible arm movements that do not violate flight stability 

regions. The model and control architecture is implemented 

in hardware (Sec. V) to characterize and compensate for 

reactionary forces. The aerial manipulation system presented 

in this paper can successfully grasp and transport various 

objects while maintaining stable flight. 

II. MANIPULATOR KINEMATICS 

The manipulation structure as a whole is represented as a 

'squid', a collection of serial chain manipulators in a rigid 

structure. The squid occupies it's own reference frame S 
defined with respect to the quadrotor reference frame Q. 

Each serial chain also possesses it's own reference frame 

To and is defined with respect to S. Furthermore each chain 
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Fig. 2: Reference Frames for Manipulators 

is represented by a number of frames equal to the number 

of links in the chain where Tz is the lth linkage in the chain. 

The end effector occupies it's own frame Ei for the ith chain. 

Using these frames we can calculate the position of the end 

effector from each manipulator into the world frame W. 
Typically the position of the quad-rotor is considered 'fixed' 

in W during kinematic calculations. This assumption also 

fixes the S in W since it is rigidly attached to the quadrotor. 

Each serial chain manipulator has a number of linkages 

connected by revolute joints. Each joint has an axis of 

actuation perpendicular to the previous joint. In a four joint 

serial chain manipulator, this configuration provides two 

revolute joints in each axis as seen in Fig 2. Each link i 
is represented by a position Pi = X, y, z in Tz, an actuation 

ai, a norm�lized vector axis of rotation ri, a width, a length, 

and depth ki = W, h, d, and a direction vector Vi. While this 

model is not the simplest, it is used for programmatic ease 

and model optimization may be performed if desired later. 

The squid possesses a position Ps and rotation Os in Q, a 

vector of each chain position It in S. 
Kinematics of the manipulator are basic and performed by 

stepping through each reference frame to the end effector of 

the chain. Rotation of the joint is determined by a direction 

cosine matrix of the actuation via the actuation axis 

(1) 

(2) 

where ri is the rotation in reference to Tz. The linkage is 

transformed into world space by the product of previous 

rotations and the offset of the previous directed linkage 

vectors VO .. i-l 
(3) 

(4) 

where ri and Pi are the rotation and position in reference to 

T. To find a set of joint angles that satisfy a particular point 

e, the inverse kinematics, a simple iterative decent method is 

performed. In this method the Jacobian, J, for the kinematic 

chain is calculated and an actuation step f::,.(} defined by the 

step gain a factor and the end effector distance to the goal 

modifies the current serial actuations 

ioex I 08, 

J
(
e
, 
(}) = l��: oez 

08, 
8e 

J �. ( ' ' ) 8ei = rz x e - Pi 

f::,.e=a(e-Pi) 
f::,.(} = 

J
T f::,.e 

(} = (} + f::,.(} 

(5) 

(6) 

(7) 

This procedure is repeated until the end effector is within 

a user defined 'reasonable' threshold. Superior inverse kine­

matics algorithms exist which are far better optimized, how­

ever this method is sufficient for the current goals. 

III. QUAD ROTOR MODEL 

One focus of this research is to show how the manipulators 

influence the dynamics of the quadrotor. As such, quadrotor 

dynamics considered in this paper do not account for various 

aerodynamic effects (i.e. blade flapping, ground effect, etc. ) 

experienced during highly dynamic flying maneuvers. Most 

of the vehicle's critical motions occur around hover outside 

of ground effect. This fact justifies a simplified mathemat­

ical model since with given speeds and maneuverability, 

the quadrotor experiences little to none of the previously 

mentioned aerodynamic effects. 

A key part of quadrotor dynamics is the propulsion system 

torque and thrust. With no additional aerodynamic effects, 

propeller thrust and drag can be estimated using the NACA­

standardized thrust and torque coefficients CT (Sa) and 

CQ (Sb). In [14], the authors measured the performance 

of various propellers used in UAVs. Knowing the thrust 

and torque coefficients of given propellers, one can easily 

calculate the thrust and torque of each propeller with respect 

to the applied voltage. 

(Sa) 

(Sb) 

Rotor thrust and torque are marked T and Q, respectively; 

p stands for air density which is assumed to be constant; 

n ex U[V] is the rotor speed; and D is the rotor radius. 

Forces and torques of each propeller are added according to 
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the standard quadrotor propulsion system equations as shown 

in (9). 

(9) 

Dynamics of brushless DC motors used on the aircraft 

proved to have an important impact in aircraft stability and 

cannot be omitted from the MM-UAV model. Off the shelf 

electronic speed controllers are used to power and control 

the motors, which makes it impossible to devise a complete 

model for the motors. Therefore, a simplified 1st order PT1 

dynamic model is used. 

Considering simplified aero<rynamic conditions, propellers 

simply produce thrust forces Ti as shown in (8a). Summing 

them all together gives the total aircraft thrust. Each propeller 

torque Ti, in contrast, has two components, one coming 

from the actual propeller drag (8b), and the other due to 

the displacement of the propeller from the COG (center of 

gravity). 

Ti = Qi + �RT X Ti 
I V. STABILITY ANALYSIS 

(10) 

Given quadrotor body dynamics and manipulator kinemat­

ics, a simplified arm model is utilized to establish stability 

criteria for the complete system. Much of the previous work 

in quadrotor flight and stability assumes the geometric center 

and quadrotor center of mass are coincident. In our model 

as shown in Figs. 3a and 3b, the quadrotor center of mass 

QCM is shown offset downward in the z direction due to the 

mass of the arms. Further, the overall center of mass, eM, 
shifts based on the joint angles of the two shoulder joints. 

Prior work in aircraft stability analysis has measured 

center of mass offsets based on the load mass while ignoring 

affects from the gripper [4], [5]. In this work, the 4-DOF 

arms and end-effectors introduce a significant increase in 

payload and disturbance to the dynamics and therefore 

cannot be neglected. 

A. Simplified Kinematics 
The simplified kinematics approach shown in Figs. 3a and 

3b divides the system into 4 parts: quadrotor body, arms A 

and B, and added payload D (i.e. foam block or balsa stick). 

We only observe the movements of the second joints q� and 

q1 where the remainder of the arm joints remain fixed. This 

simplification allows us to view the arms as links of length C 
and mass m A = m B, and corresponding moments of inertia. 

In the simplified approach, each element's moment of inertia 

is written as a diagonal tensor: 

[IXX x T 1= Rec � o 
Iyy 

o 
(11) 

with transformation matrix R<5c that transforms the moment 

of inertia into a geometric center coordinate system. Each 

element, except the quadrotor which is calculated separately, 

is modeled as a prismatic joint. Therefore, the key equation 

for the principal axis moment of inertia is simplified to: 

I _ mlx2 xx - 12 (12) 

The longer the link lx in any direction x and the more mass 

m it has, the larger the impact it has on the overall system 

dynamics. Key aspects observed are the changes in roll and 

pitch angle dynamics. This analysis could later be easily 

applied to yaw angle stability. For both manipulation tasks, 

arms A and B move together. The first item is the varying 

center of mass vector position: 

CM= I:Xemmx 
I:mx (13) 

where X stands for each element of the model; notations 

Q, A, B and D mark quadrotor, arms A, B, and added 

payload D; mx are respective element masses. Vectors 

Aem, Bem and Dem change as joints q1, q1, and q�, q1 
move. Analyzing the two situations separately, the equations 

for these vectors can be derived: 

Aem = -d· x + [Csin(q)] y + [L2 + Ccos (q)] z (14a) 

Bem = d· x + [Csin(q)] y + [L2 + Ccos (q)] z (14b) 

Dem = 2C . sin(q)y + [L + 2Ccos (q)] z (14c) 

with constant dimensions d, Land C marked in Figs. 3a and 

3b. 

Using the Parallel axis theorem, one can easily calculate 

the overall moment of inertia Ic M that changes as the joints 

move. Further, it varies depending on the payload size and 

mass: 

ICM = IQ + IA + IB + ID 
(15) + mQ�Q2 + mA�A2 + mB�B2 + mD�D2 

where �Q, �A, �B and �D represent the center of mass 

of each body with respect to the center of mass frame, written 

in the skew matrix form; eM and IQ, lA, IB, and ID are 

corresponding moments of inertia in each element's center of 

mass. Each vector distance �X is calculated as the difference 

between the element centroid and the overall centroid eM 
(l3) with respect to the GC, � X = XCM - eM. 

Final equations for the C M moment of inertia are shown 

graphically in Fig. 4. The images are plotted relative to 

the quadrotor moment of inertia IQ. Although the effects 

of both payloads are similar, there are a few substantial 

differences. The two plots at the top of the figure show how 

the moment of inertia changes due to joint angle changes 

and stick length increase. Both plots show an increase in 

the moment of inertia as the arms move from a horizontal 

to vertical position. An increase in stick length also adds 

to the overall moment of inertia. The stick is modeled as 

an infinitesimally thin prismatic joint and therefore has only 

one principal axis greater than zero (i.e. the one pointing at 

its length). Referring back to (12), it is easy to show how a 

linear increase in stick length has a cubic relation to moment 

of inertia increase (ICM rv Ls). This effect is shown in Fig. 

4d. 
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The lower two plots in Fig. 4 show moment of inertia 

change as the mass of the added foam box payload increases. 

This is also shown together with joint position changes where 

the previous effects are observed but to a greater degree. In 

these figures, the box size is kept constant and only its mass 

varies. A linear relation between box object mass and overall 

moment of inertia is shown in these figures. These plots show 

how simple manipulation tasks can change the total moment 

of inertia, causing potential stability problems, which will be 

analyzed in the following section. 

B. Angle Control Stability 
Control of the quadrotor body is achieved through PI-D 

control shown in Fig. S. This form of PID control was chosen 

because it eliminates potential damages to the actuators that 

can usually be experienced when leading the control differ­

ence directly through the derivation channel [IS]. In order 

to analyze the stability of the system, one needs to know 

the varying parameters in the control loop. The disturbance 

caused from the Euler equation component wywz(Iyy - Izz) 
affects the behavior of the control loop, but not its stability 

and therefore will not be considered in this analysis. The 

major factor that affects the stability of the aircraft is the 

moment of inertia J = lxx, Iyy. Mathematical formalisms 

that describe the variations in the moment of inertia was 

given in Sec. IV-A. The transfer function of the angle control 

loop in Fig. S can easily be derived (16). Similarly as 

in [S], the stability conditions are applied to its 4th order 

characteristic polynomial a484+a383+a282+a18+ao, where 

the 4th order dynamic system includes both the dynamics of 

the aircraft and motor dynamics [16]. 

KnK= (Kp 8 + 1) 
G KiT=J Ki 

a.CL = 
84 + --.!...83 + K nKm 82 + KdKmKp 8 + KdK=Ki 

T= TmJ TmJ TmJ 
(16) 

Coefficients KD, Kp and Ki are PI-D respective gains and 

Km and Tm represent propulsion system gain and the motor 

time constant. If we apply the Routh-Hurwitz stability crite­

ria, it is possible to derive the analytical equations for sta­

bility conditions. The necessary system stability conditions 

require that all coefficients be positive and that inequalities 

in (l7) are satisfied. Stability criterion (17) shows that, due 

to the dynamics introduced from the motors (i.e. T m), the 

proportional control Kp can drive the system unstable. In 

fact, only the derivative control Kd has the sole purpose of 

stabilizing the system. This shows how the motor dynamics 

cannot be neglected when analyzing MM-UAV stability. 

KdKmKp 
K 

(1 - TmKp) > J 
, 

(l7a) 

(17b) 

Moreover, the angle control loop in Fig. S can be observed as 

a cascade system, where the K D gain serves as an inner loop 

controller. This approach enables tuning the PI-D controller 

in two separate steps (i.e. rotation speed and angle loop). 

After closing the speed loop, the inner loop transfer function 

takes the standard 2nd order transfer function form: 

1 
GWCL = J JT (18) 1 + --8 + _ _ m_. 82 KDKm KDKm 

It can further be shown that the equations for the system's 

natural frequency Wn and damping ratio ( are: 

Wn = J
KDKm 

JTm (19a) 

(19b) 

While from (l7) follows that a smaller moment of iner­

tia increases the system stability, (19) shows that smaller 

moments of inertia cause oscillations in the inner loop. 

While that is not a problem in this analysis, in the actual 

implementation, where a discrete form and input limits are 

used, the amplitude and frequency of these oscillations can 

cause serious problems and stability issues. The amplitude 

can causes problems when faced with control inputs limits 

(i.e. 12V) and the frequency is of concern when it surpasses 

the sampling frequencies. Smaller moments of inertia pro­

duce higher frequencies and smaller damping ratios thus can 

decrease the stability in multiple ways. 

V. EXPERIMENTAL RESULTS 

A. Test Setup 
The test vehicle is constructed using a low-cost quadro­

tor aircraft (GAUl SOOX) and two manipulator arms. The 

quadrotor uses four equally positioned 960 kV brushless 

motors equipped with 10 inch propellers to provide lift and 

maneuverability. The vehicle diameter is SOOmm and the 

aircraft is capable of lifting objects below SOOg. A landing 

gear system, originally designed for a pan-tilt camera, has 

been modified to provide an unobstructed workspace for the 

manipulators. An off-the-shelf IMU (inertial measurement 

unit) fused with motion capture data is used to control the 

yaw, pitch, and roll of the quadrotor. Indirect Kalman filtering 

is used to combine gyroscopic sensor data and motion 

capture visual feedback. Low-level control is implemented 

on an Arducopter board that runs Kalman filtering and a PI­

D controller loop with a 50Hz sample rate. Motion capture 

is based on vision markers placed just above the center of 

mass of the vehicle. An operator controls both the quadrotor 

and arms using a joystick that provides position control of 

the air vehicle and joint control of the servos. A ROS-based 

PC program routes available motion capture data (i.e. x, y, z 
position and speed) and joystick data to the Arducopter 

board using rosserial. The motion capture system used in 

this research is based on 18 V100:R2 OptiTrack cameras 

connected to a separate PC running Arena Software. 

B. Flight Tests 
Following lift-off under manual control, the autopilot is 

enabled. The operator can move the aircraft to achieve a 

suitable hover location in addition to changing arms from a 
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Fig. 6: Two Grab and Drop Experiments: Notice the large 

pitch oscillations and x displacement following the grab (t 

= 617s and 625s) [16]. 

stow position to grab posture. Fig. 6 illustrates a grab and 

drop experiment using a foam block as shown in Fig. 1. The 

first block grab test is highlighted in blue and the second 

test is highlighted in green. The arms are used to clamp 
the block, the aircraft moves to a desired location, and the 

block is released. In this experiment, when the block is 

grabbed, the vehicle drops in altitude and shows large pitch 

oscillations and displacement along the x axis. Once the 

block is released, the vehicle stabilizes and gains in altitude. 

VI. CONCLUSIONS 

In this paper a control methodology for a multi-arm 

manipulating aerial vehicle is presented. The system kine­

matics have been applied to our controller implementation 

to compensate for reactionary forces during arm movement. 

Through stability analysis, we have identified manipulator 

joint positions that ensure flight stability for a simple PI-D 

controller. Flight tests confirm the kinematic model and con­

troller for the system. In the future, we plan to test different 

adaptive and robust control techniques in order to achieve 

greater flight stability and more dexterous manipulation. 
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