2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1736-8/12/S31.00 ©2012 IEEE 3425

CBiRRT. At each time-step, the corresponding pose from
each candidate motion is one possible state that the robot
can attain. Thus, the goal of the learning agent is to choose
an optimal sequence of states from these choices with respect
to defined constraints.

Each state represents a joint angle set. The corresponding
action reflects a change between the current state or pose and
possible future states. Each state-action pair was given three
penalty values, representing the costs of entering a given
future state from the current one.

The first penalty value was the torque at each joint. The
torque was calculated using a humanoid dynamic model
developed with ProPac [20]. The humanoid used, called
Mini-Hubo is a scaled-down version of Drexel’s full-sized
Jaemi-Hubo. Mini-Hubo was developed to serve as a tool
to prototype humanoid motions [21]. The second penalty
value considered differences between a planned motion and
a human’s natural motion. Here, a set of human motion
trajectories for many sample goal positions was captured.
Then, from this collection, trajectories for new goal posi-
tions were regenerated using nearest-neighbor algorithms.
The resulting regenerated trajectory was then converted to
be compatible with Mini-Hubo’s joint structure. The third
penalty value employs joint limits to produce temporally
and spatially smooth trajectories. Here, limits on joint angles
and velocities, and temporal change of joint torque, were
assigned. The net result is an overall penalty for the learning
agent that was a weighted sum of these three penalties.

Section II describes optimization of the overall architec-
ture based on reinforcement learning. Section III shows how
the initial set of planned paths were produced from CBiRRT.
The Mini-Hubo dynamic model and joint torque calculations
are then given in Section IV. Section V explains how
the database of human movements using a motion capture
system is constructed and how the recorded trajectories were
used to find a natural motion prototype for a given task.
Lastly, experimental results using a model of Mini-Hubo in
OpenRAVE [22] are given in SectionVI.

II. SYSTEM OVERVIEW AND REINFORCEMENT
LEARNING AGENT

Penalty
Difference from a Human's Motion

Penalty

States Torque

Input ’:: Output
CBIiRRT2 —» Optimized
E Trajectory

Reinforcement Learning Agent

Q Value Table

Multiple
Path Planned
Trajectories

Penalty

Limits for Joint Angle, Velocity
and Torque Change

States l

Fig. 1. Trajectory-Optimizing System based on Q-Learning

Figure 1 illustrates the proposed reinforcement learning
based trajectory optimization architecture. In this paper, the
Q-learning algorithm for the reinforcement learning agent is
used. (Q-learning uses an action-value function to compute
the expected rewards of taking a given action in a given
state [23]. This function generates a fixed policy. Equation
1 shows how @ values in the agent are updated

Q(st, ar) + Q(st,ar) + ar(st, ar)* (D
[Pry1 + varg maxQ(st1, aty1) — Q(st, ar)]

At every learning time ¢, there are multiple states s¢ and
a set of actions(at) which exist per state. « is the learning
rate and P is the penalty value. v is a discount factor for the
maximum future () value.

The CBiRRT(Constrained Bidirectional RRT) planner
from the Constrained Manipulation Planning Suite (CoMPS)
[24] was used to generate multiple solution trajectories for a
given manipulation task. Example tasks include box grasping
and target reaching. For such tasks, Mini-Hubo was modeled
and OpenRAVE was used to check collisions and stability.
A generated trajectory consists of a set of angles from every
joint of MiniHubo during movement.

Every planned trajectory was initially divided into a set
of joint angles at every time step, and each set of angles
became all different states. In this study, 10 msec time steps
were used to synchronize the frequency of human motion
capture. Figure 2 shows the () value table for ¢ When there
are R input RRT trajectories, and the necessary time for
finishing the input trajectory is IV *10 msec, R* N different
states exist in the () value table. Therefore, each state in
a row of the () table is a set of joint angles at a given
time step. These states correspond to a particular solution
trajectory. Each input trajectory may take a different amount
of time to finish. Hence each trajectory’s had to be equalized.
Therefore, the longest solution determined the length of the
@ value table, N. Shorter trajectories were padded with their
final state to fill in the remaining time steps in the () table.

Fig. 2. Q Value Table at Learning Time t

In the @ table of Figure 2, state smny is a joint angle set
from the time step n of the mth input trajectory. The) value
table also shows that each state has its own set of actions,
at. When the current state is smny, a possible action for this

3426

state is defined as a transition between state smn¢ and any
of the states in time step n + 1. For example, if the present
learning time is ¢, then the current state is sm1¢. This current
state is a set of joint angles at time step 1 corresponding to
the m™ input trajectory. If one selects aj; as an action for
the current state, the next state becomes sj2¢1. This state is
a set of joint angles at time step 2 of the jt" input trajectory.
With the @) value updating equation above, Q(sml, aji) can
be updated based on the previous value of Q(smle, ajt) and
the predicted maximum future @) value (2).

arg maxQ(sj2e+1, at+1) (2)
ar41

At the next learning time ¢+1, a set of state sj2¢,; and
selected action at repeats the whole process. When states in
the last column of the) value table became updated, the
state which should be updated is automatically redirected to
one of the states which are in the first column of () table.
This process repeats until convergence is reached.

To update @) values at each set of state and action, 3
different penalty values were defined as follows: (1) the sum
of torque values of each joints in the current state were
assigned as a penalty value. Previous studies showed that
joint torques can be an effective method of measuring energy
consumption [25]. For calculating torque values, a dynamic
model of Mini-Hubo was built using ProPac, and the torques
of each joint in MiniHubo were calculated for all states.
For more accurate prediction of torques over joints, the
dynamic model was refined with system identification using
real torque data collected from the actual Mini-Hubo. (2)
the differences between planned trajectories and a human’s
natural motions were also penalized. Human motions for
various tasks were captured and converted into ones which
met Mini-Hubo’s kinematic constraints. After building a
database of recorded trajectories, a trajectory which can
reach a desired goal under a given task was calculated using a
nearest-neighbor algorithm. Due to the kinematic differences
between the human and Mini-Hubo, a direct comparison of
joint positions is not always meaningful. The normalized
joint velocities were used instead as a means of comparison.
The differences between normalized velocities for the human
motion and a given state formed another penalty value. (3)
movements also received penalty values when they exceeded
joint angle, velocity and torque over time constraints. This
joint penalty ensured that the final trajectory met the physical
limits of the robot. Penalizing the angle and velocity of joints
ensures a smooth trajectory over time. Penalties also limit the
rate of change of torque, thus ensuring spatial smoothness.
By choosing suitably small time steps, the resulting trajectory
is also kept collision-free and statically-stable.

By iterating with the weighted sum of penalties, () values
became updated until they converged. Also, the learning
agent generated a new trajectory which minimizes penalty
at each time step. Since every state in the () value table
came from the RRT trajectories which complete the task,
states in the last column of @ value table meet the goal.

Possible state transitions are currently defined only be-
tween the current state and states in the immediate future.
It is theoretically possible to move to distant future states
in a single action, since all states are simply a set of joint
angles. However, it is difficult to assure that this action
will be collision-free and stable due to the potentially large
change in joint angles. The large number of possible states
also increases both computation and convergence times for
the @ table. To add variety to the states, a large number of
solution trajectories from the RRT algorithm was generated.

By assigning different weights on each penalty value, the
properties of the output trajectory could be controlled. For
example, a trajectory which focuses on minimizing joint
torques instead of a more natural appearance could be found
by increasing the weight of the torque penalty values. Since
the @ learning algorithm explores all possible states from
the set of input RRT trajectories, the final output trajectory
from our learning agent is globally optimized.

III. PATH PLANNING USING RAPIDLY-EXPLORING
RANDOM TREE

Virtual Hubo and MiniHubo

Fig. 3.

To plan a trajectory which is an input for our optimiz-
ing system, the Constrained Bidirectional Rapidly-exploring
Random Tree (CBiRRT)[6] was used. This path planning
algorithm found a set of joint angles at every time step until
it placed the end effectors in sample positions of a goal
area. This algorithm was developed with OpenRAVE plu-
gins, namely the Constrained Manipulation Planning Suite
(CoMPS)[24]. Consequently Mini-Hubo was built in Open-
RAVE. The actual and virtual Mini-Hubo is shown in Figure
3. Virtual Mini-Hubo is designed to have same kinematic and
dynamic properties of MiniHubo.

Various kinds of manipulation, like reaching a box, could
be implemented using CoMPS and Virtual Mini-Hubo. In
the authors’ research, there was a box in front of Virtual
Mini-Hubo. Here, the humanoid’s arms were commanded to
reach each side of the box. Both the virtual and actual Mini-
Hubo do not have hands. Thus, tips of both lower arms were
assigned as end effectors. Figure 4 shows a motion of Virtual
Mini-Hubo along a generated RRT trajectory.

For this reaching task, multiple RRT trajectories were
generated and each planned motion commanded Virtual
Mini-Hubo’s end effectors to reach each side of the box while
conserving task constraints [6]. After collecting multiple

3427

Fig. 5.

Defined Links and Joints in MiniHubo Model

planned trajectories, each one was divided along the time
coordinate. As explained in Section II, each time-divided
trajectory became an individual state at the corresponding
time step and input trajectory of the () value table.

IV. PREDICTION OF ENERGY CONSUMPTION

To predict energy consumption of each state in the @) value
table, it was necessary to calculate Mini-Hubo’s torque val-
ues. The generated RRT trajectory was originally expressed
as joint angles during motion. To explicitly relate joint angles
to torques, a Mathematica package called ProPac [20] was
used. ProPac supports the assembly of simulation models
for mechanical systems such as robots. ProPac generated an
explicit set of non-linear equations that model Mini-Hubo.

To build Mini-Hubo’s model with ProPac, all necessary
data for individual joints and links, such as part masses,
centers-of-mass, and moments of inertia were collected. For
such data, the CAD toolkit Open Inventor was employed. A
system interconnection structure was created from the joint
structure of Mini-Hubo. Figure 5 shows all the defined links
and joints for Mini-Hubo. Only the motion of the upper body
from Mini-Hubo was considered in this paper. As such, 10
links and 9 joints were defined for this process. Mini-Hubo’s
waist defined the model’s reference frame.

Poincare equations of motion was formulated on the
Mini-Hubo model. Equation 3 shows the dynamic equations
generated with ProPac. ¢ is the generalized coordinate vector
of the joint angle and p is a quasi velocity of a joint.

M(q)p+ C(g,p)p+ F(q) = Bp 3)

where

OM(q)p 1 0M(q)p

Clg,p) = —I[3q V(gl+ 5 87qV(q)]T
+[ZJm:1ijjT]V i
— 3T ou(q) — 1T
F(g)=V (9 aq" To=V'(g)B

u(q) is the potential energy function and M is a spatial
inertia matrix. Bp denotes the generalized forces represented
in the p-coordinate frames and B denotes the generalized
forces in the velocity of q coordinate frame. In combination
with Equation 4, kinematic equations of each joint and link,
these equations provide a closed set of equations.

= V(gp 4

ProPac calculates all components of Poincare equation and
all of Mini-Hubo’s joint angles, velocities and accelerations
are known. One can thus compute B which is a set of applied
generalized motor forces of each joint. Torque values for the
motors at each joint can then be easily calculated by dividing
each generalized force by the known joint velocities. Using
this method of inverse dynamics, one could generate torque-
calculation functions for Mini-Hubo’s joints under a given
trajectory with Mini-Hubo’s forward kinematic model.

Torque-calculation functions were refined using the MAT-
LAB System Identification (SID) toolkit to more accurately
predict motor energy consumption. SID is software which
constructs mathematical models of dynamic systems from
measured input-output data. To use this toolkit, Mini-Hubo
was first commanded a defined sample trajectory and each
joint’s actual torque data was recorded. Next, a new SID
dynamics model was constructed using previously formed
ProPac torque-prediction functions. These functions were
combined with the recorded torque data.

After defining SID model parameters to be refined, like
the center of mass, Levenberg-Marquardt estimation was
used to construct a new torque-calculation model for each
joint. Such estimation could optimize parameter values in
the dynamic model that was constructed. This made the
computed torque values from the model become more similar
to those measured from Mini-Hubo’s actual motors.

Figure 6 shows calculated torque values of Mini-Hubo
before and after parameter estimation. Here, Mini-Hubo’s
right arm was commanded to rotate counter-clockwise. The
torque for the motor at the right shoulder pitch joint was
measured. The top figure shows both the measured and pre-
dicted (curved line) torque output data using the constructed
dynamics model before parameter estimation. The bottom
figure shows the predicted torque values from the model after
parameter estimation. One sees that the model became more
similar to measured data after parameter estimation.

A refined torque-prediction model of Mini-Hubo was used
and energy consumption of each state in the ()-value table
was calculated. Penalty values were assigned by weighting
energy consumption. For simplicity, Mini-Hubo’s head was

3428

3429

the shoulder pitch joints just enough to reach the box. This
movement resulted in reduction of torque in shoulder roll
joints of MiniHubo. Since both arms were kept close to torso
of MiniHubo, there was not much torque consumption for the
shoulder roll joint while lifting arms. In case of trajectory
from captured motion, additional torque was spent in the
shoulder roll joint since both arms had non-zero roll angles
from torso of MiniHubo during lifting motion.

Fig. 12. When Mimicking a Human’s Motion Had the Highest Priority

§l-}% ylle

inm

b §
of
awi

Ly dw-:w.\ adﬁx ndH
L E"f e
54 88 a8 88

Fig. 13. When Minimizing Torques Had the Highest Priority and Mim-
icking a Human’s Motion Had the Next Highest Priority

VII. CONCLUSION

This paper presented an approach to optimize humanoid
motions. With multiple statically stable input RRT trajec-
tories, a reinforcement learning agent generated a motion
trajectory which minimized a set of penalty values. Penalty
factors were weighted to generate trajectories that minimized
each joint’s energy consumption. Weighting also was se-
lected to command the humanoid’s joints to move similarly
to a person’s natural motions. ProPac and SID were used
to build a torque model of Mini-Hubo to measure energy
costs of each joint. Human motion capture was collected for
a given set of tasks and a database was created to similarity
cost functions. The converged @) value table generated an
optimized trajectory that minimized penalty values. Repeata-
bility was another outcome of this approach; one the () value
table was generated it could be used repeatedly whenever
initial kinematic configuration of Mini-Hubo is one of states
in the table and a given task are the same. The () value table
could generate an optimized trajectory which has minimum
penalty values that the given initial state can achieve.

VIII. ACKNOWLEDGMENTS

This project was supported by a Partnerships for Inter-
national Research and Education (PIRE) grant #0730206,

sponsored by the the U.S. National Science Foundation.

REFERENCES

[1] J. Barraquand and J.C. Latombe, Robot motion planning: A distributed
representation approach, Int. J. Robot. Res., 10(6):628-649, 1991.

[2] L. Kavraki, et al, Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces, IEEE Trans. on Robotics and Au-
tomation, 12-4, 566-580, 1996.

[3] S. LaValle and J. Kuffner, Rapidly-exploring random trees: Progress
and prospects, WAFR, 2000.

[4] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner,
Manipulation planning with workspace goal regions, ICRA, 2009.

[5] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. Kuffner, Manipulation
planning on constraint manifolds, ICRA, 2009.

[6] Dmitry Berenson, Joel Chestnutt, Siddhartha S. Srinivasa, James J.
Kuffner, Satoshi Kagami, Pose-Constrained Whole-Body Planning us-
ing Task Space Region Chains, Humanoids09, 2009.

[7] Zordan, V.B., Hodgins, J.K., Tracking and Modifying Upper-body
Human Motion Data with Dynamic Simulation. Computer Animation
and Simulation 99, Eurographics, pp 13-22, 1999.

[8] M. Riley, A. Ude, C. Atkeson, Methods for Motion Generation and
Interaction with a Humanoid Robot: Case Studies of Dancing and
Catching, AAAI and CMU Workshop on Interactive Robotics and
Entertainment, Pittsburgh, Pennsylvania, April 2000.

[9] Daisuke Matsui, Takashi Minato, Karl F. MacDorman, and Hiroshi
Ishiguro, Generating Natural Motion in an Android by Mapping Human
Motion, Intelligent Robots and Systems(IROS), pp3301-3308, 2005.

[10] M. J. Mataric, Getting humanoids to move and imitate, IEEE Intelli-
gent Systems, vol. 15, no. 4, pp. 18-24, 2000.

[11] Lige ZHANG, Qiang HUANG, Shusheng LV, You SHI, Zhijie WANG,
and Ali Raza JAFRI, Humanoid Motion Design Considering Rhythm
Based on Human Motion Capture, IEEE/RSJ IROS, 2006.

[12] Nancy Pollard, Jessica K Hodgins, M.J. Riley, and Chris Atkeson,
Adapting human motion for the control of a humanoid robot, IEEE
International Conference on Robotics and Automation, 2002

[13] L. Guilamo, J. Kuffner, K. Nishiwaki, and S. Kagami, Manipulability
optimization for trajectory generation, IEEE ICRA, 2006.

[14] A. Safonova, N. Pollard, and J. Hodgins, Optimizing human motion for
the control of a humanoid robot, Applied Mathematics and Applications
of Mathematics, 2003.

[15] Wael Suleiman, Eiichi Yoshida, Fumio Kanehiro, Jean-Paul Laumond
and Andre Monin, On Human Motion Imitation by Humanoid Robot,
International Conference on Robotics and Automation, 2008.

[16] Wael Suleiman, Eiichi Yoshida, Jean-Paul Laumond and Andre Monin,
On Humanoid Motion Optimization, IEEE-RAS 7th International Con-
ference on Humanoid Robots, Pittsburgh, PA, USA, 2007

[17] S. Albrecht, K. Ramrez-Amaro, F. Ruiz-Ugalde, D. Weikersdorfer,
M. Leibold, M. Ulbrich and M. Beetz, Imitating human reaching
motions using physically inspired optimization principles, IEEE-RAS
11th International Conference on Humanoid Robots, 2011

[18] Oussama Khatib, Luis Sentis, and Jae-Heung Park, A Unified Frame-
work for Whole-Body Humanoid Robot Control With Multiple Con-
straints and Contacts, Springer Tracts in Advanced Robotics - STAR
Series, European Robotics Symposium, 2008.

[19] Michael J. Gielniak, Andrea Lockerd Thomaz, Spatiotemporal corre-
spondence as a metric for human-like robot motion, HRI, 2011

[20] Harry G. Kwatny and Gilmer Blankenship, Nonlinear Control and An-
alytical Mechanics: A Computational Approach (Control Engineering)
, Birkhauser Boston, 1 edition, 2000

[21] Robert Ellenberg, David Grunberg, Paul Y. Oh”, Youngmoo Kim,
Using Miniature Humanoids as Surrogate Research Platforms, Inter-
national Conference on Humanoid Robots, 2009

[22] Rosen Diankov and James Kuffner. OpenRAVE: A Planning Ar-
chitecture for Autonomous Robotics, tech. report CMU-RI-TR-08-34,
Robotics Institute, Carnegie Mellon University, July, 2008

[23] Watkins and Dayan, C.J.C.H., Q-learning.Machine Learning, ISBN :
8:279-292, 1992

[24] Dmitry Berenson and Siddhartha Srinivasa and James Kuffner, Task
Space Regions: A Framework for Pose-Constrained Manipulation Plan-
ning, International Journal of Robotics Research, 2011

[25] Ray G. Burdett, Gary S. Skrinar, and Sheldon R. Simon, Compari-
son of Mechanical Work and Metabolic Energy Consumption During
Normal Gait, Journal of Orthopaedic Research, vol. 1, pp:63-72, Raven
Press, New York, 1983

3431

