
Applying Human Motion Capture to Design Energy-efficient
Trajectories for Miniature Humanoids

Kiwon Sohn*
Mechanical Engineering and Mechanics

Drexel University
Philadelphia, USA
ks948@drexel.edu

Paul Oh**
Mechanical Engineering and Mechanics

Drexel University
Philadelphia, USA

paul.yu.oh@drexel.edu

Abstract— In this research, an approach to optimize mo-
tions for a humanoids is presented. Rapidly-exploring Random
Tree(RRT) were used to plan an initial suboptimal motion. A
reinforcement learning was then implemented to optimize the
trajectories with respect to energy consumption, similarity to a
human’s natural motion and, physical limits. Energy cost was
estimated by joint torque from a dynamic model, and validated
against actual measured torque values using system identifica-
tion (SID). With a motion capture system, human motions were
collected for a given set of tasks, producing a representative
“natural” motion, another cost for optimization. Physical limits
of each joint ensured spatial and temporal smoothness of
generated trajectories. Finally, an experimental evaluation of
the presented approach was demonstrated through simulation
using MiniHubo model in OpenRAVE.

I. INTRODUCTION

As humanoids approach human size, strength and range of
motion, they are expected to execute increasingly complex
tasks and human-level performance. To meet this, kinematic
path-planning are applied on high degree-of-freedom(DOF)
robots. Algorithms based on potential field [1] are often
employed with applications mostly limited to mobile robots.

Humanoids are high-DOF robots that involve large search
spaces. As such, probabilistic-based approaches [2] like
Rapidly-exploring Random Trees(RRT) [3] and its variants
IKBiRRT [4] and CBiRRT [5] are often used. These al-
gorithms are well-suited for a humanoid because the its
end-effector can serve as the end-goal [6]. The concept
of Task Space Region Chains(TSRs) introduced coupled
with CBiRRT2 can even handle kinematic models in a dy-
namic environments. These search-based methods guarantee
collision-free and quasi-static balance in generated paths.
However, these algorithms do not consider energy-efficiency
or “natural” appearance of the planned motions.

Another more direct approach for complex motion plan-
ning is to employ captured human-motion data. Such ap-
proaches are traditionally used in animation [7], but have
also been applied to generate humanoid whole-body motions
[8],[9]. Extracting motion primitives from captured data
allows humanoids to create novel motions beyond simply
mimicry of people [10],[11].

However, differences between human and humanoid joints
and structures present significant challenges using motion-
capture based approaches. [12] scales and limits motions to
overcome such challenges by considering kinematic and dy-

namic constraints like joint angles and accelerations. Motion-
capture can produce very natural-looking motions. However
humanoid motions are often not optimized for energy ef-
ficiency. People possess core sets of muscles. Optimal (or
near-optimal) motions may favor the use of different sets of
joints. The net effect is that optimal motions for a human
and a humanoid are often different.

Recently, a broad range of optimization techniques have
been applied to humanoid motion planning. In early studies,
many researchers focused on the kinematic structure of
humanoids, trying to minimize error between planned trajec-
tories and actual movements [13],[14]. Dynamic constraints
like torque limits have been included to satisfy humanoid
physical limits. For instance, [15] began with captured mo-
tion data and invoked Lagrange multipliers to limit motions
within joint constraints. In other studies, they used a pre-
calculated motion from path-planning algorithms and applied
optimization techniques to satisfy those same physical limits
[16]. Unlike [15], joint torque was minimized instead of
kinematic differences. In other words, natural motion was
not an emphasis. To address this [17] recorded instances
of a particular motion, extracting “principle” ones that best
represented the set. They then applied a bi-level optimization
to minimize kinematic hand and joint jerks and the joint
torque’s time rate of change.

Another class of planning methods try to specifically
generate life-like motions by accounting for human posture
constraints. Khatib in [18] presented a framework for whole-
body humanoid control, addressing multiple hierarchical con-
straints and contacts simultaneously. The framework ensures
that constraints are not violated by projecting a given motion
task into the null space of constraints. This powerful method
requires torque control which is often not an option on
many humanoids due to safety designs. [19] introduced a
method for re-targeting robot motions to be more human-like
by optimizing spatio-temporal correspondence. This method
tries to produce an optimal set of temporal and spatial shifts
but does not consider energy consumption as a cost.

This paper introduces a method to balance two goals:
generate life-like humanoid motions and minimize joint en-
ergy consumption. To achieve these two goals simultaneously
a reinforcement learning agent (Q-learning algorithm) was
used. For a given task, multiple candidate motions which
are collision-free and statically balanced are generated using

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1736-8/12/S31.00 ©2012 IEEE 3425

CBiRRT. At each time-step, the corresponding pose from
each candidate motion is one possible state that the robot
can attain. Thus, the goal of the learning agent is to choose
an optimal sequence of states from these choices with respect
to defined constraints.

Each state represents a joint angle set. The corresponding
action reflects a change between the current state or pose and
possible future states. Each state-action pair was given three
penalty values, representing the costs of entering a given
future state from the current one.

The first penalty value was the torque at each joint. The
torque was calculated using a humanoid dynamic model
developed with ProPac [20]. The humanoid used, called
Mini-Hubo is a scaled-down version of Drexel’s full-sized
Jaemi-Hubo. Mini-Hubo was developed to serve as a tool
to prototype humanoid motions [21]. The second penalty
value considered differences between a planned motion and
a human’s natural motion. Here, a set of human motion
trajectories for many sample goal positions was captured.
Then, from this collection, trajectories for new goal posi-
tions were regenerated using nearest-neighbor algorithms.
The resulting regenerated trajectory was then converted to
be compatible with Mini-Hubo’s joint structure. The third
penalty value employs joint limits to produce temporally
and spatially smooth trajectories. Here, limits on joint angles
and velocities, and temporal change of joint torque, were
assigned. The net result is an overall penalty for the learning
agent that was a weighted sum of these three penalties.

Section II describes optimization of the overall architec-
ture based on reinforcement learning. Section III shows how
the initial set of planned paths were produced from CBiRRT.
The Mini-Hubo dynamic model and joint torque calculations
are then given in Section IV. Section V explains how
the database of human movements using a motion capture
system is constructed and how the recorded trajectories were
used to find a natural motion prototype for a given task.
Lastly, experimental results using a model of Mini-Hubo in
OpenRAVE [22] are given in SectionVI.

II. SYSTEM OVERVIEW AND REINFORCEMENT
LEARNING AGENT

Database of Captured Motions

Multiple
 Path Planned
Trajectories

Q Value Table

Torque

Reinforcement Learning Agent

Difference from a Human's Motion
PenaltyPenalty

Checking Physical Limits

Propac Model of miniHubo

CBiRRT2

States

States Penalty
Limits for Joint Angle, Velocity
 and Torque Change

Optimized
Trajectory

Input Output

Fig. 1. Trajectory-Optimizing System based on Q-Learning

Figure 1 illustrates the proposed reinforcement learning
based trajectory optimization architecture. In this paper, the
Q-learning algorithm for the reinforcement learning agent is
used. Q-learning uses an action-value function to compute
the expected rewards of taking a given action in a given
state [23]. This function generates a fixed policy. Equation
1 shows how Q values in the agent are updated

Q(st, at)← Q(st, at) + αt(st, at)∗ (1)

[Pt+1 + γ argmax
at+1

Q(st+1, at+1)−Q(st, at)]

At every learning time t, there are multiple states st and
a set of actions(at) which exist per state. α is the learning
rate and P is the penalty value. γ is a discount factor for the
maximum future Q value.

The CBiRRT(Constrained Bidirectional RRT) planner
from the Constrained Manipulation Planning Suite (CoMPS)
[24] was used to generate multiple solution trajectories for a
given manipulation task. Example tasks include box grasping
and target reaching. For such tasks, Mini-Hubo was modeled
and OpenRAVE was used to check collisions and stability.
A generated trajectory consists of a set of angles from every
joint of MiniHubo during movement.

Every planned trajectory was initially divided into a set
of joint angles at every time step, and each set of angles
became all different states. In this study, 10 msec time steps
were used to synchronize the frequency of human motion
capture. Figure 2 shows the Q value table for t When there
are R input RRT trajectories, and the necessary time for
finishing the input trajectory is N ∗10 msec, R∗N different
states exist in the Q value table. Therefore, each state in
a row of the Q table is a set of joint angles at a given
time step. These states correspond to a particular solution
trajectory. Each input trajectory may take a different amount
of time to finish. Hence each trajectory’s had to be equalized.
Therefore, the longest solution determined the length of the
Q value table, N . Shorter trajectories were padded with their
final state to fill in the remaining time steps in the Q table.

 Time step 1 Time step 2

 Time step N

Input
Trajectory 1

 Q(s11t, a1t)
 Q(s11t, a2t)
 .
 .
 Q(s11t, aRt)

 Q(s12t, a1t)
 Q(s12t, a2t)
 .
 .
 Q(s12t, aRt)

 Q(s1Nt, a1t)
 Q(s1Nt, a2t)
 .
 .
 Q(s1Nt, aRt)

Input
Trajectory 2

 Q(s21t, a1t)
 Q(s21t, a2t)
 .
 .
 Q(s21t, aRt)

 .
 .
 .
 .
 .

 Q(s2Nt, a1t)
 Q(s2Nt, a2t)
 .
 .
 Q(s2Nt, aRt)

 .
 .

 .
 .

 .
 .

 .
 .

Input
Trajectory R

 Q(sR1t, a1t)
 Q(sR1t, a2t)
 .
 .
 Q(sR1t, aRt)

 Q(sRNt, a1t)
 Q(sRNt, a2t)
 .
 .
 Q(sRNt, aRt)

Fig. 2. Q Value Table at Learning Time t

In the Q table of Figure 2, state smnt is a joint angle set
from the time step n of the mth input trajectory. The Q value
table also shows that each state has its own set of actions,
at. When the current state is smnt, a possible action for this

3426

state is defined as a transition between state smnt and any
of the states in time step n+ 1. For example, if the present
learning time is t, then the current state is sm1t. This current
state is a set of joint angles at time step 1 corresponding to
the mth input trajectory. If one selects ajt as an action for
the current state, the next state becomes sj2t+1. This state is
a set of joint angles at time step 2 of the jth input trajectory.
With the Q value updating equation above, Q(sm1t, ajt) can
be updated based on the previous value of Q(sm1t, ajt) and
the predicted maximum future Q value (2).

argmax
at+1

Q(sj2t+1, at+1) (2)

At the next learning time t+1, a set of state sj2t+1 and
selected action at repeats the whole process. When states in
the last column of the Q value table became updated, the
state which should be updated is automatically redirected to
one of the states which are in the first column of Q table.
This process repeats until convergence is reached.

To update Q values at each set of state and action, 3
different penalty values were defined as follows: (1) the sum
of torque values of each joints in the current state were
assigned as a penalty value. Previous studies showed that
joint torques can be an effective method of measuring energy
consumption [25]. For calculating torque values, a dynamic
model of Mini-Hubo was built using ProPac, and the torques
of each joint in MiniHubo were calculated for all states.
For more accurate prediction of torques over joints, the
dynamic model was refined with system identification using
real torque data collected from the actual Mini-Hubo. (2)
the differences between planned trajectories and a human’s
natural motions were also penalized. Human motions for
various tasks were captured and converted into ones which
met Mini-Hubo’s kinematic constraints. After building a
database of recorded trajectories, a trajectory which can
reach a desired goal under a given task was calculated using a
nearest-neighbor algorithm. Due to the kinematic differences
between the human and Mini-Hubo, a direct comparison of
joint positions is not always meaningful. The normalized
joint velocities were used instead as a means of comparison.
The differences between normalized velocities for the human
motion and a given state formed another penalty value. (3)
movements also received penalty values when they exceeded
joint angle, velocity and torque over time constraints. This
joint penalty ensured that the final trajectory met the physical
limits of the robot. Penalizing the angle and velocity of joints
ensures a smooth trajectory over time. Penalties also limit the
rate of change of torque, thus ensuring spatial smoothness.
By choosing suitably small time steps, the resulting trajectory
is also kept collision-free and statically-stable.

By iterating with the weighted sum of penalties, Q values
became updated until they converged. Also, the learning
agent generated a new trajectory which minimizes penalty
at each time step. Since every state in the Q value table
came from the RRT trajectories which complete the task,
states in the last column of Q value table meet the goal.

Possible state transitions are currently defined only be-
tween the current state and states in the immediate future.
It is theoretically possible to move to distant future states
in a single action, since all states are simply a set of joint
angles. However, it is difficult to assure that this action
will be collision-free and stable due to the potentially large
change in joint angles. The large number of possible states
also increases both computation and convergence times for
the Q table. To add variety to the states, a large number of
solution trajectories from the RRT algorithm was generated.

By assigning different weights on each penalty value, the
properties of the output trajectory could be controlled. For
example, a trajectory which focuses on minimizing joint
torques instead of a more natural appearance could be found
by increasing the weight of the torque penalty values. Since
the Q learning algorithm explores all possible states from
the set of input RRT trajectories, the final output trajectory
from our learning agent is globally optimized.

III. PATH PLANNING USING RAPIDLY-EXPLORING
RANDOM TREE

Fig. 3. Virtual Hubo and MiniHubo

To plan a trajectory which is an input for our optimiz-
ing system, the Constrained Bidirectional Rapidly-exploring
Random Tree (CBiRRT)[6] was used. This path planning
algorithm found a set of joint angles at every time step until
it placed the end effectors in sample positions of a goal
area. This algorithm was developed with OpenRAVE plu-
gins, namely the Constrained Manipulation Planning Suite
(CoMPS)[24]. Consequently Mini-Hubo was built in Open-
RAVE. The actual and virtual Mini-Hubo is shown in Figure
3. Virtual Mini-Hubo is designed to have same kinematic and
dynamic properties of MiniHubo.

Various kinds of manipulation, like reaching a box, could
be implemented using CoMPS and Virtual Mini-Hubo. In
the authors’ research, there was a box in front of Virtual
Mini-Hubo. Here, the humanoid’s arms were commanded to
reach each side of the box. Both the virtual and actual Mini-
Hubo do not have hands. Thus, tips of both lower arms were
assigned as end effectors. Figure 4 shows a motion of Virtual
Mini-Hubo along a generated RRT trajectory.

For this reaching task, multiple RRT trajectories were
generated and each planned motion commanded Virtual
Mini-Hubo’s end effectors to reach each side of the box while
conserving task constraints [6]. After collecting multiple

3427

Fig. 4. Reaching a Box using a Trajectory from CoMPS

Link2: Body
Link3: Right

Shoulder

Link4:
Right

Upper Arm

Link5:
Right Elbow

Link6:
Right

Lower Arm

Link1:
Waist

Link7: Left
Shoulder

Link8:
Left

Upper Arm

Link9:
Left Elbow

Link10:
Left

Lower Arm

Joint2: Right
Shoulder Pitch

Joint3:
Right

Shoulder Roll

Joint4:
Right Elbow

Yaw

Joint5:
Right Elbow

Pitch

Joint 1:
Waist

Joint6: Left
Shoulder Pitch

Joint7:
Left

Shoulder Roll

Joint8:
Left Elbow

Yaw

Joint9:
Left Elbow

Pitch

Fig. 5. Defined Links and Joints in MiniHubo Model

planned trajectories, each one was divided along the time
coordinate. As explained in Section II, each time-divided
trajectory became an individual state at the corresponding
time step and input trajectory of the Q value table.

IV. PREDICTION OF ENERGY CONSUMPTION

To predict energy consumption of each state in the Q value
table, it was necessary to calculate Mini-Hubo’s torque val-
ues. The generated RRT trajectory was originally expressed
as joint angles during motion. To explicitly relate joint angles
to torques, a Mathematica package called ProPac [20] was
used. ProPac supports the assembly of simulation models
for mechanical systems such as robots. ProPac generated an
explicit set of non-linear equations that model Mini-Hubo.

To build Mini-Hubo’s model with ProPac, all necessary
data for individual joints and links, such as part masses,
centers-of-mass, and moments of inertia were collected. For
such data, the CAD toolkit Open Inventor was employed. A
system interconnection structure was created from the joint
structure of Mini-Hubo. Figure 5 shows all the defined links
and joints for Mini-Hubo. Only the motion of the upper body
from Mini-Hubo was considered in this paper. As such, 10
links and 9 joints were defined for this process. Mini-Hubo’s
waist defined the model’s reference frame.

Poincare equations of motion was formulated on the
Mini-Hubo model. Equation 3 shows the dynamic equations
generated with ProPac. q is the generalized coordinate vector
of the joint angle and p is a quasi velocity of a joint.

M(q)ṗ+ C(q, p)p+ F (q) = Bp (3)

where

C(q, p) = −[∂M(q)p

∂q
V (q)] +

1

2
[
∂M(q)p

∂q
V (q)]T

+[
∑

m
j=1pjXj

T]V −T

F (q) = V T (q)
∂u(q)

∂qT
, Tp = V T (q)B

u(q) is the potential energy function and M is a spatial
inertia matrix. Bp denotes the generalized forces represented
in the p-coordinate frames and B denotes the generalized
forces in the velocity of q coordinate frame. In combination
with Equation 4, kinematic equations of each joint and link,
these equations provide a closed set of equations.

q̇ = V (q)p (4)

ProPac calculates all components of Poincare equation and
all of Mini-Hubo’s joint angles, velocities and accelerations
are known. One can thus compute B which is a set of applied
generalized motor forces of each joint. Torque values for the
motors at each joint can then be easily calculated by dividing
each generalized force by the known joint velocities. Using
this method of inverse dynamics, one could generate torque-
calculation functions for Mini-Hubo’s joints under a given
trajectory with Mini-Hubo’s forward kinematic model.

Torque-calculation functions were refined using the MAT-
LAB System Identification (SID) toolkit to more accurately
predict motor energy consumption. SID is software which
constructs mathematical models of dynamic systems from
measured input-output data. To use this toolkit, Mini-Hubo
was first commanded a defined sample trajectory and each
joint’s actual torque data was recorded. Next, a new SID
dynamics model was constructed using previously formed
ProPac torque-prediction functions. These functions were
combined with the recorded torque data.

After defining SID model parameters to be refined, like
the center of mass, Levenberg-Marquardt estimation was
used to construct a new torque-calculation model for each
joint. Such estimation could optimize parameter values in
the dynamic model that was constructed. This made the
computed torque values from the model become more similar
to those measured from Mini-Hubo’s actual motors.

Figure 6 shows calculated torque values of Mini-Hubo
before and after parameter estimation. Here, Mini-Hubo’s
right arm was commanded to rotate counter-clockwise. The
torque for the motor at the right shoulder pitch joint was
measured. The top figure shows both the measured and pre-
dicted (curved line) torque output data using the constructed
dynamics model before parameter estimation. The bottom
figure shows the predicted torque values from the model after
parameter estimation. One sees that the model became more
similar to measured data after parameter estimation.

A refined torque-prediction model of Mini-Hubo was used
and energy consumption of each state in the Q-value table
was calculated. Penalty values were assigned by weighting
energy consumption. For simplicity, Mini-Hubo’s head was

3428

Fig. 6. System Identification

not modeled. This is a reasonable assumption given that the
head’s mass with respect to the rest of the robot, is small.
Given this low mass, the impact on Mini-Hubo’s dynamics
is likely to be small. Future work will incorporate the head’s
mass and size to Mini-Hubo’s model. It is expected that this
addition will lead to even better system identification.

V. ESTIMATION OF HUMAN’S MOTION PATTERN

A human’s natural motion pattern and a state in the
Q value table to be updated, were compared to measure
similarity. For this, repetitive motion’s of a human were
captured using 18 Optitrack FLEX:V100R2 cameras and
Arena software.

Fig. 7. Human and MiniHubo in Motion Capture System

NatNet SDK in Arena software provides rotational data in
quaternion format for skeletal links of the human body. For
this paper’s experiments rotations were converted to Euler
angles. This enabled direct assignment of angles for Mini-
Hubo’s joints. Different sequences of Euler rotation (roll,
pitch and yaw) could result in Mini-Hubo having different
kinematic poses of links. Therefore, for each of Mini-
Hubo’s links, a sequence of Euler rotations was identified.
This identification ensured that the Euler and quaternion
representations resulted in the same kinematic pose. Next,
all quaternion angle data from human motion capture data
was converted to Euler form to compute trajectories for Mini-
Hubo. Figure 8 shows the conversion.

The authors observe that humanoids mainly uses its upper
body for repetitive tasks that include: 1)Reaching for an
object, 2)Moving an object, and 3)Mimicry of a human
motion such as dance. With this observation, human motion
data in the above categories was captured and a database for
each task was built. For example, 27 different motions were
captured to build a database of motions for the reaching for a
box-related task. For each motion, a box was located in all of

Upper Arm

Lower Arm

Upper Body and
Lower Body

x

z
y

Quaternion → Euler z1xz2

Z1 → Shoulder Pitch

X → Shoulder Roll

Z2 → Elbow Yaw

Quaternion → Euler zyx

Z → Elbow Yaw

Y → Elbow Pitch

Quaternion → Euler yzx
y → Waist Yaw

Fig. 8. Conversion from Rotation Data of a ARENA Human Model to
Joints Angles of Mini-Hubo

the different goal positions. Figure 9 (right and left) show 27
sample positions of an object that was located during motion
capture. Within a limited area in which the human does not
need to walk, turn or bend the knees to reach an object, an
object was located in one of the 27 sample positions which
have uniform distances with other sample positions.

Fig. 9. 27 Goal Positions for a Reaching a Box Task

Fig. 10. Initial and Last Pose of a Human for One Sample Goal Position
of Box(Left) and for Various Goal Positions(Right)

In case that a given task for MiniHubo is to reach an
object which is located in one of 27 sample positions in
database, we could use a saved trajectory in database directly.
However, if a goal space is not same with any sample goal
positions in 27 pre captured motions, a weighted nearest
neighborhood algorithm was used for estimating a human’s
trajectory for a given goal space. 4 neighboring sample posi-
tions which have nearest distances from a given goal position
were selected among 27 sample positions in the database.
Trajectories of motions for selected sample positions were
gathered, then the average of gathered trajectories was cal-

3429

culated using different weighting factors for each trajectory.
To give more weights on a trajectory from the nearest object,
the inverse value of Euclidean distance between a given goal
object and the nearest object was used for a weighting factor.
Because of dimensional differences between a human body
and MiniHubo, 4 nearest neighborhoods were chosen based
on ratio of body length and the lengh, width, height, and
goal location of the object.

Since the size of an object which MiniHubo should reach
for in a given task can vary, a nearest neighborhood algorithm
was implemented individually for each arm. This approach
generated different goal positions for each arms of MiniHubo
and made it possible for MiniHubo to have trajectories which
can reach objects of various sizes. In case of objects ouside
of the boundary for a captured area, additional actions such
as turning of waist joint or bending knees were necessary.

Figure 11 shows a trajectory of MiniHubo which was
generated from database of human’s motion. This shows that
people bend both arms at the same time when they try to
reach a goal object. And it also demonstrates that people
can reach each side of an object using the shortest path.

Fig. 11. Reaching a Box using a Trajectory from Database of Human’s
Motion

At each state in Q-value table, velocity value between
current state and previous state was calculated and com-
pared with velocity of trajectory which was estimated from
human’s motion database. Then, differences between two
velocity values were combined with a weighting factor and
assigned as a penalty value.

In this proposed learning agent, captured trajectory from
the human in MoCap have just a role as penalty values
in Q learning. And final output trajectory from learning
agent is a mixture of each state in Q-value table which is
initially from each time step of path planned trajectory for
MiniHubo by RRT. Since the RRT trajectory was calculated
for MiniHubo to reach a desired goal position, the output
trajectory from our learning agent which is combination of
each state also could make it possible for MiniHubo to reach
a target object. Therefore, there was no need to worry about
different kinematic structure and different length of the arm
links between the human and MiniHubo.

In our experiments for this paper, motions were captured
and collected from only one person who performed the given
tasks in the MoCap system, on the assumption that human
subjects share very similar motion patterns under similar

mission and goal positions. This assumption will be tested
and further analyzed in future studies. Optimizing between
motion patterns from several different human subjects and
its combination with dynamics of humanoids robot can give
us many future directions for this study.

VI. EXPERIMENTAL RESULT

Q values in learning agent were updated until every
value in Q value table became converged. Q values were
updated according to Equation 1 and P which is a penalty
value included both energy consumption (Section IV) and
difference from human’s natural pattern (Section V) to mix
two different desired features. In our experiment, an iteration
of 85500 updates was required to meet this criterion. For
learning rate and discounting factor, 0.5 was assigned for
both factors and this made a proposed agent has moderate
dependency on recent information and future rewards.
Since different weighting factors could be assigned to each
penalty values, we could get several different kinds of output
trajectories from learning agent with a given set of input
RRT trajectories. We produced one output trajectory which
minimized an estimated amount of torque consumption
for each joint of MiniHubo and another trajectory which
had the highest priority on mimicking human’s natural
motion. Then, a trajectory which tries to satisfy both goals
above was produced. Table below shows estimates of energy
consumption from each produced trajectory. Dividing sum of
torque values from whole joints of MiniHubo by execution
time of corresponding trajectory, average torque values
from each trajectory were calculated. This table shows
that there was almost 10 percent energy reduction when a
learning agent has the highest priority on minimizing torque.

Highest Learning Factor Average Torque
Mimicking a Human’s Motion 0.260Nm
Minimizing Torques 0.232Nm
Minimizing Torques while
Mimicking a Human’s Motion 0.237Nm

Figure 12 and 13 demonstrate movements of MiniHubo
at the first case and the last case of table above. In Figure
12, MiniHubo implements an output trajectory which was
produced when differences from a human’s natural motion
had the highest weight for penalty values in Q learning
process. Like a motion captured trajectory in Figure 11,
MiniHubo starts bending both arms at the same time(Green
Line) and the tip of the arm reached each side of box
diagonally with the shortest path(Red Line). In Figure 13,
a penalty value for torque consumption had the higher
weight than penalty value for differences from a human’s
motion during Q learning stage. Since minimizing energy
consumption was emphasized in generating a trajectory, an
output trajectory has a different pattern compared to a motion
captured trajectory. MiniHubo bent each arms at different
time step(Green Line) and did not move lower arms diago-
nally to each side of box(Red Line). Rather than moving its
arms diagonally like captured trajectory, MiniHubo tried to
reduce the angle of the shoulder roll joints first, then rotated

3430

the shoulder pitch joints just enough to reach the box. This
movement resulted in reduction of torque in shoulder roll
joints of MiniHubo. Since both arms were kept close to torso
of MiniHubo, there was not much torque consumption for the
shoulder roll joint while lifting arms. In case of trajectory
from captured motion, additional torque was spent in the
shoulder roll joint since both arms had non-zero roll angles
from torso of MiniHubo during lifting motion.

Fig. 12. When Mimicking a Human’s Motion Had the Highest Priority

Fig. 13. When Minimizing Torques Had the Highest Priority and Mim-
icking a Human’s Motion Had the Next Highest Priority

VII. CONCLUSION

This paper presented an approach to optimize humanoid
motions. With multiple statically stable input RRT trajec-
tories, a reinforcement learning agent generated a motion
trajectory which minimized a set of penalty values. Penalty
factors were weighted to generate trajectories that minimized
each joint’s energy consumption. Weighting also was se-
lected to command the humanoid’s joints to move similarly
to a person’s natural motions. ProPac and SID were used
to build a torque model of Mini-Hubo to measure energy
costs of each joint. Human motion capture was collected for
a given set of tasks and a database was created to similarity
cost functions. The converged Q value table generated an
optimized trajectory that minimized penalty values. Repeata-
bility was another outcome of this approach; one the Q value
table was generated it could be used repeatedly whenever
initial kinematic configuration of Mini-Hubo is one of states
in the table and a given task are the same. The Q value table
could generate an optimized trajectory which has minimum
penalty values that the given initial state can achieve.

VIII. ACKNOWLEDGMENTS

This project was supported by a Partnerships for Inter-
national Research and Education (PIRE) grant #0730206,

sponsored by the the U.S. National Science Foundation.

REFERENCES

[1] J. Barraquand and J.C. Latombe, Robot motion planning: A distributed
representation approach, Int. J. Robot. Res., 10(6):628-649, 1991.

[2] L. Kavraki, et al, Probabilistic Roadmaps for Path Planning in High-
Dimensional Configuration Spaces, IEEE Trans. on Robotics and Au-
tomation, 12-4, 566-580, 1996.

[3] S. LaValle and J. Kuffner, Rapidly-exploring random trees: Progress
and prospects, WAFR, 2000.

[4] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner,
Manipulation planning with workspace goal regions, ICRA, 2009.

[5] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. Kuffner, Manipulation
planning on constraint manifolds, ICRA, 2009.

[6] Dmitry Berenson, Joel Chestnutt, Siddhartha S. Srinivasa, James J.
Kuffner, Satoshi Kagami, Pose-Constrained Whole-Body Planning us-
ing Task Space Region Chains, Humanoids09, 2009.

[7] Zordan, V.B., Hodgins, J.K., Tracking and Modifying Upper-body
Human Motion Data with Dynamic Simulation. Computer Animation
and Simulation 99, Eurographics, pp 13-22, 1999.

[8] M. Riley, A. Ude, C. Atkeson, Methods for Motion Generation and
Interaction with a Humanoid Robot: Case Studies of Dancing and
Catching, AAAI and CMU Workshop on Interactive Robotics and
Entertainment, Pittsburgh, Pennsylvania, April 2000.

[9] Daisuke Matsui, Takashi Minato, Karl F. MacDorman, and Hiroshi
Ishiguro, Generating Natural Motion in an Android by Mapping Human
Motion, Intelligent Robots and Systems(IROS), pp3301-3308, 2005.

[10] M. J. Mataric, Getting humanoids to move and imitate, IEEE Intelli-
gent Systems, vol. 15, no. 4, pp. 18-24, 2000.

[11] Lige ZHANG, Qiang HUANG, Shusheng LV, You SHI, Zhijie WANG,
and Ali Raza JAFRI, Humanoid Motion Design Considering Rhythm
Based on Human Motion Capture, IEEE/RSJ IROS, 2006.

[12] Nancy Pollard, Jessica K Hodgins, M.J. Riley, and Chris Atkeson,
Adapting human motion for the control of a humanoid robot, IEEE
International Conference on Robotics and Automation, 2002

[13] L. Guilamo, J. Kuffner, K. Nishiwaki, and S. Kagami, Manipulability
optimization for trajectory generation, IEEE ICRA, 2006.

[14] A. Safonova, N. Pollard, and J. Hodgins, Optimizing human motion for
the control of a humanoid robot, Applied Mathematics and Applications
of Mathematics, 2003.

[15] Wael Suleiman, Eiichi Yoshida, Fumio Kanehiro, Jean-Paul Laumond
and Andre Monin, On Human Motion Imitation by Humanoid Robot,
International Conference on Robotics and Automation, 2008.

[16] Wael Suleiman, Eiichi Yoshida, Jean-Paul Laumond and Andre Monin,
On Humanoid Motion Optimization, IEEE-RAS 7th International Con-
ference on Humanoid Robots, Pittsburgh, PA, USA, 2007

[17] S. Albrecht, K. Ramrez-Amaro, F. Ruiz-Ugalde, D. Weikersdorfer,
M. Leibold, M. Ulbrich and M. Beetz, Imitating human reaching
motions using physically inspired optimization principles, IEEE-RAS
11th International Conference on Humanoid Robots, 2011

[18] Oussama Khatib, Luis Sentis, and Jae-Heung Park, A Unified Frame-
work for Whole-Body Humanoid Robot Control With Multiple Con-
straints and Contacts, Springer Tracts in Advanced Robotics - STAR
Series, European Robotics Symposium, 2008.

[19] Michael J. Gielniak, Andrea Lockerd Thomaz, Spatiotemporal corre-
spondence as a metric for human-like robot motion, HRI, 2011

[20] Harry G. Kwatny and Gilmer Blankenship, Nonlinear Control and An-
alytical Mechanics: A Computational Approach (Control Engineering)
, Birkhauser Boston, 1 edition, 2000

[21] Robert Ellenberg, David Grunberg, Paul Y. Oh”, Youngmoo Kim,
Using Miniature Humanoids as Surrogate Research Platforms, Inter-
national Conference on Humanoid Robots, 2009

[22] Rosen Diankov and James Kuffner. OpenRAVE: A Planning Ar-
chitecture for Autonomous Robotics, tech. report CMU-RI-TR-08-34,
Robotics Institute, Carnegie Mellon University, July, 2008

[23] Watkins and Dayan, C.J.C.H., Q-learning.Machine Learning, ISBN :
8:279-292, 1992

[24] Dmitry Berenson and Siddhartha Srinivasa and James Kuffner, Task
Space Regions: A Framework for Pose-Constrained Manipulation Plan-
ning, International Journal of Robotics Research, 2011

[25] Ray G. Burdett, Gary S. Skrinar, and Sheldon R. Simon, Compari-
son of Mechanical Work and Metabolic Energy Consumption During
Normal Gait, Journal of Orthopaedic Research, vol. 1, pp:63-72, Raven
Press, New York, 1983

3431

