
Humanoid Throwing: Design of Collision-Free Trajectories with Sparse
Reachable Maps

Daniel M. Lofaro1, Robert Ellenberg2, Paul Oh2, and Jun-Ho Oh3

Electrical Engineering1 and Mechanical Engineering2 Dept., Drexel University, Philadelphia PA, USA

Mechanical Engineering3 Dept., Korean Advanced Institute of Science and Technology, Daejeon, S. Korea
dml46@drexel.edu, rwe24@drexel.edu, paul@coe.drexel.edu, jhoh@kaist.ac.kr

Abstract— This work shows a method of creating trajectories
to achieve end-effector velocity control for high degree of
freedom position controlled, high-gain, robots. The focus of
this work is throwing an object. It is shown that the full
reachable area of the end-effector does not need to be known
to achieve the desired velocity when a good collision model of
the robot is available. The end-effector velocity (magnitude and
direction) is specified as well as a duration of this velocity. A
sparse map of reachable end-effector positions in free space
and the corresponding poses in joint space is created using
random sampling in joint space and forward kinematics. The
desired trajectory in free space is placed within the sparse map
with the first point of the trajectory being a known pose from
the original sparse map. The Jacobian Transpose Controller
method of inverse kinematics is then used to find the subsequent
points in the trajectory. Each pose in the trajectory is checked
against the collision model to guarantee no self-collisions. This
method was tested on the 130 cm tall full size humanoid Jaemi
Hubo and its virtual representation.

I. INTRODUCTION

This work focuses on creating and testing valid trajecto-

ries for high degree of freedom (DOF), high-gain, position

controlled mechanisms that results in the desired end-effector

velocity. Throwing and hitting are examples of end-effector

velocity control. The goal is to have the end-effector moving

at a specific rate in a specific direction. It is also a task

that demands whole-body coordination. When the arm moves

quickly, as in the case of pitching, such upper-body motions,

if not coordinated with the lower-body, can cause the hu-

manoid to lose balance. The overarching goal of this work is

to create stable whole-body motions that reliably moves the

end-effector at the desired velocity while retaining stability.

Fig. 1 shows this overarching goal as an example of a stable

human like pose when preparing to throw a ball. The focus of

this work is the first required step for throwing with a high

gain position controlled robot; throwing an object without

self-collision with sparse knowledge of the full reachable

area of the robot.

The resulting system is capable of creating trajectories

for overhand and underhand throwing motions. This work

illustrates the trajectory-based approach with underhand

throwing, but can also be applied to overhand cases.

*This project was supported by a Partnerships for International Research
and Education (PIRE) grant #0730206, sponsored by the the U.S. National
Science Foundation (NSF)

Fig. 1. Jaemi Hubo (Hubo KHR-4) demonstrating the initial pose for
the overarching goal of creating a full body, human-like, stable, motion for
throwing.

The location in space where the desired end-effector

velocity occurs is important in instances such as tennis, ping-

pong, and other hitting activities where the end-effector does

not control the object throughout the entire motion. Throwing

is an example of when the end-effector’s velocity holds a

higher priority over the position.

Mechanisms with only a single degree of freedom are

restricted to throwing in a plane. 2-DOF mechanisms are able

to throw in R3 space with the correct kinematic structure.

Such a mechanism can choose its release point or its end-

effector velocity but not both. Mechanisms containing 3 or

more DOF with the correct kinematic structure are able to

throw in R3 and choose both the release point and the end-

effector velocity simultaneously.

Low degree of freedom throwing machines/robots are

common. Typical throwing robots have between one and

three degrees of freedom (DOF) [1]–[5]. All of these mech-

anisms are limited to throwing in a plane. Sentoo et al. [6]

achieved an end-effector velocity of 6.0 m/s and can throw in

R3 space using it’s Barret Technology Inc 4-DOF arm with

a 360o rotation base yaw actuator. These low degree of free-

dom throwing robots are either physically attached/planted

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1736-8/12/S31.00 ©2012 IEEE 1519

to the mechanical ground or have a base that is significantly

more massive then the arm.

Haddadin et al. [7] used their 7-DOF arm and a 6-

DOF force torque sensor with standard feedback methods

to dribble a basket ball. In addition Zhikun et al. [8] used

reinforcement learning to teach their 7-DOF planted robot

arm to play ping-pong. Likewise Schaal et al. [9] taught their

high degree of freedom (30-DOF) humanoid to hit a tennis

ball using an on-line special statistical learning methods.

Visual feedback was used in the basketball throwing robot

by Hu et al. [10] achieving accuracy of 99%. All of the latter

robots were fixed to the ground to guarantee stability.

Kim et al. [11], [12] takes the research to the next level

with finding optimal overhand and sidearm throwing motions

for a high degree of freedom humanoid computer model. The

model consists of 55-DOF and is not fixed to mechanical

ground or a massive base. Motor torques are then calculated

to create both sidearm and overhand throws that continuously

satisfies the zero-moment-point stability criteria [13].

The highly articulated 40-DOF full size humanoid Jaemi

Hubo KHR-4 (Fig. 1) is the platform focused on in this

work. Jaemi Hubo is a high-gain, position-controlled biped

humanoid weighing 37 kg and standing 130 cm tall. It is de-

signed and made by Dr. Jun-Ho Oh Director of the Hubo Lab

at the Korean Advanced Institute of Science and Technology

(KAIST). Jaemi has been located at the Drexel Autonomous

Systems Lab (DASL) since Fall 2008. DASL has extensive

experience with the Jaemi Hubo KHR-4 platform in key

areas needed to complete this work. Balancing was explored

when developing a real-time zero moment point (ZMP)

preview control system for stable walking [14]. A full-

scale safe testing environment designed for experiments with

Jaemi Hubo was created using DASL’s Systems Integrated

Sensor Test Rig (SISTR) [15]. Additionally all algorithms are

able to be tested on miniature and virtual versions of Jaemi

Hubo prior to testing on the full-size humanoid through the

creation of a surrogate testing platform for humanoids [16].

The goal of this work is to show the creation of collision

free trajectories for end-effector velocity control, the first step

in our overarching goal of creating a system with the ability

to throw objects and retain balance. Towards this, Section II-

A will discuss the paper’s method of detecting self collisions.

Section II-B describes the creation of the robot’s sparse

reachable map (SRM), a map in R3 of reachable points.

Section II-C shows the creation of a throwing trajectory

in R3 and placing it withing the robot’s reachable area

using the SRM. Section II-D explains the inverse kinematics

used to convert the throwing trajectory in R3 to joint space

for this high degree of freedom humanoid. Section II-E

describes the creation of the setup trajectory from the initial

pose of the robot to the starting pose of the throwing

trajectory using a variant of trapezoidal motion control to

keep within the actuators’ physical limitations. Section III

features experiments to demonstrate the successful execution

of this paper’s goal of throwing. Section V concludes the

paper and comments on future work.

II. METHODOLOGY

To create a valid throwing trajectory for a high-DOF, high-

gain, position controlled robot, a desired line in R3 in the

direction of the desired velocity must be created. Each point

in the line is temporally separated by the robot’s command

period Tr. All points in this line must be reachable. Each

point in the line must have poses that do not create a self-

collision. A valid throwing trajectory is created when the

latter criteria are met.

A. Self-Collision Detection

Self-collision is an important when dealing with a high

DOF robot. Unwanted self-collisions can cause permanent

damage to the physical and electrical hardware as well as

causing the robot not to complete the given task.

Fig. 2. OpenRAVE model of Hubo KHR-4. Left: Model with SRM of
right arm. Center: SRM (blue) with setup and velocity phase trajectories
(green) Right: Collision Geometry

To aid in the detection of self-collisions a detailed model

of the Hubo KHR-4 was made in the widely used open-

source robot simulation environment OpenRAVE [17]. The

model was created by exporting the three dimensional

schematics that the physical robot was created with, to a

format that OpenRAVE can use. This was done in order

to ensure an accurate and detailed model. For these experi-

ments we needed the external boundaries only; the internal

geometry was replaced with a simplistic representation. The

external shell is the only part now visible, see Fig 2 (Center).

The Proximity Query Package (PQP) was used to detect

collisions between any two pieces of the robot’s external

shell. Due to the high polygon count of the external shell

the computation time of detecting a collision was on the

magnitude of seconds. It is advantageous to reduce this time

if the system is to run live on the robot. Computation time is

decreased significantly when boundary/collision geometries

are simplified due to the lower polygon count. The collision

geometries were further simplified to decrease computation

time by making them primitives such as spheres, cylinder

and boxes, see Fig 2 (Right).

Joint limitations are added to the model to mimic the

physical robot. The model can be commanded the same

configurations as the physical robot. A pose is commanded

to the model, PQP searches for any collisions. With the

simplified collision geometry self-collisions are detected on

the order of milliseconds. If there are no collisions then the

pose can be applied to the physical robot. A 5% increase

1520

in volume between the simplified collision geometry and

the high polygon geometry was added to ensure all of the

physical robot’s movements will not collide due to minor

calibration errors.

B. Reachable Area

The desired end-effector velocity must be achieved with

all joint limits and self-collision constraints satisfied at all

times. Typical methods of determining reachability is to

move each joint through its full range of motion for each

DOF [18], [19]. Due to the high DOF of the Hubo KHR-4

this method is not desirable. A sampling method described

in this work is similar to Geraerts et al. [20]. It was used to

accommodate the high DOF system. Both active and static

joints must be defined to calculate the reachable area of

a manipulator at a discrete time N . The static joints are

assumed to hold a fixed position at time step N . Active joints

are free to move to any position as long as it satisfies the

joint angle limitations and does not create a self-collision.

A uniform random number generator is used to assign each

active joint with an angle in joint space. Each random angle

assigned is within the valid range of motion of the respective

joint. The self-collision model described in Section II-A is

used to determine the self-collision status with the randomly

assigned joint angles. If there is no self-collision the end-

effector position and transformation matrix T are calculated

using forward kinematics.

χi =

[
Ri Γi

0 1

]
(1)

T = [χ1 · χ2 · ... · χn] (2)

where χi is the transformation between joint i− 1 and i, Ri

is the rotation of joint i with respect to joint i− 1 and Γi is

the translation of joint i with respect to joint i− 1, and n is

the number of joints in the kinematic chain.

The end-effector position and the joint angles used are

recorded. This process is repeated multiple times to form

a sparse representation of reachable end-effector positions

in R3 and the corresponding joint angles in joint space.

The resulting representation is called the Sparse Reachable

Map (SRM). Fig. 3 shows a cross section of the SRM

about the right shoulder between -0.40 m to 0.40 m on X,

-0.40 m to 0.40 m on Z, and -0.21 to -0.22 m on Y. The

blue points show valid end-effector locations with known

kinematic solution in joint space. Fig. 2 shows the SRM of

the entire right arm. The SRM is used to calculate valid

movement trajectories.

C. Trajectory Generation

An end-effector velocity, �Ve, is chosen based on target

location, the well known equations of projectile motion, and

the required velocity duration te. �Ve must be held for a time

span of te. The release point must be within the time span

te. The magnitude of the velocity in the direction of �Ve

immediately preceding time span te must be less than or

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Z
P

os
iti

on
 (m

et
er

s)

X Position (meters)

Sparse Reachable Map Cross Section for Right Arm
with setup phase and velocity trajectory L

d
 (X−Z view)

Sparse Reachable Map
Commanded
Logged Values

Fig. 3. Cross section of the SRM about the right shoulder between -
0.40 m to 0.40 m on X, -0.40 m to 0.40 m on Z, and -0.21 to -0.22
m on Y. (Blue) show valid end-effector locations with known kinematic
solution in joint space. (Red) Commanded right arm end-effector position
in R3. (Green) The logged joint space values converted to R3 using forward
kinematics.

equal to the magnitude of �Ve during te. te must be an integer

multiple of the robot’s actuator command period Tr.

A line �ld in R3 that passes through (X0, Y0, Z0) in the

direction of �Ve is created. �Ld is the discrete representation

of �ld. Each point in �Ld, (X0, Y0, Z0), (X1, Y1, Z1) · · ·
(Xn, Yn, Zn), are separated by a time span Tr.

The desired velocity is defined as

�Vd = [Vxî, Vy ĵ, Vz k̂] (3)

The line �Ld(n) is defined as

�Ld(n) = [Xnî, Ynĵ, Znk̂] (4)

where n is the current zero based time step index value

for the time span te. The change in �Ld between time step 0
and n must be equal to our desired velocity �Vd.

Δ�Ld|n0
n · Tr

= �Vd (5)

thus

�Vd =
�Ld(n)− �Ld(0)

n · Tr
(6)

The line �Ld at time step n can now be defined in terms

of �Vd, Tr, the origin �Ld(0), and the current zero based time

step index value n.

�Ld(n) = n · Tr · �Vd + �Ld(0) (7)

where

�Ld(0) = [X0, Y0, Z0] (8)

1521

The line �Ld is the trajectory the robot’s end-effector must

follow during the time span te. The starting point �Ld(0) must

be found so that �Ld is within the reachable area. �Ld(0) is

set to a random starting points chosen within the SRM.

�Ld(0) ∈ SRM (9)

All subsequent points in �Ld must fall within some Eu-

clidean distance d from any point in SRM. If one of the

points in �Ld fails this criteria a new random point is chosen

for �Ld(0) and the process is repeated.

Once an �Ld is found that fits the above criteria the

inverse kinematic solution must be found for each point and

checked for reachability. Smaller values of d will increase

the probability �Ld is within the reachable area defined in

the SRM however more iterations will be required to find

a valid �Ld. Larger values of d will decrease the number of

iterations needed to find a valid �Ld however the probability

of �Ld being in the reachable area is decreased. In addition

larger values of d decreases the system’s ability to properly

map near sharp edges in the SRM. Increasing the number of

samples in the SRM will allow for larger values for d.

D. Inverse Kinematics

The trajectory �Ld has one point with a known kinematic

solution in R3 and in joint space, �Ld(0). The joint space

kinematic solutions for points �Ld(1) → �Ld(n) are unknown.

Mapping the robot’s configuration �q ∈ Q to the desired end-

effector goal �xg ∈ X , where Q is the robot’s configuration

space and X is in R3, is done using Jacobian Transpose

Controller used by Weghe et al. [21]. Weghe shows the

Jacobian as a linear map from the tangent space of Q to

X and is expressed as

�̇x = J�̇q (10)

The Jacobian Transpose method is used because of the

high DOF of the Hubo KHR-4. Under the assumption of an

obstacle-free environment the Jacobian Transpose Controller

is guaranteed to reach the goal. A proof is shown by

Wolovich et al. [22].

To drive the manipulator from its current position �x to the

goal positions �xg the error �e is computed and the control law

is formed.

�e = �xg − �x (11)

�̇q = kJT�e (12)

where k is a positive gain and self-collisions are ignored.

The instantaneous motion of the end-effector is given by

�̇x = J�̇q = J(kJT�e) (13)

The final pose �q for our goal position �xg can now be

found.

The Jacobian Transpose method works best when there is

a small difference between the current position �x and the

goal position �xg . �Ld(0) is known both in X and in Q and

is the starting point.

�x = �Ld(0) (14)

�q0 = SRM
(
�Ld(0)

)
(15)

The goal position �xg is set to the next point in �Ld

�xg = �Ld(1) (16)

The pose �q1 can now be calculated

�q1 = �q0 + �̇q0 = �q0 + kJT�e|�xg

�x (17)

where �xg = �Ld(0) and �x = �Ld(1). �Ld(1) is now known

both in X and in Q. Now �x = �Ld(1) and the process is

repeated until all points in �Ld are known both in X and Q.

E. On-Line Trapezoidal Motion Profile

The robot’s starting position �x0 is not guaranteed to be

the same as the first point in the velocity trajectory �Ld.

To avoid over large accelerations when giving this step

input from �x0 to �Ld(0) an on-line trapezoidal motion profile

(TMP) was used to generate joint space commands with the

desired limited angular acceleration and velocity. The TMP

was only active during the setup phase where the robot’s

end-effector moves from �x0 to Ld(0). This is because the

TMP’s inherent nature has the potential to adversely effect

the desired velocity in R3 under high angular velocity and

acceleration conditions in joint space.

The TMP was designed to limit the applied angular

velocity and acceleration in joint space and to prevent over-

current/torque. An important advantage over simply limiting

output velocity and acceleration is that the TMP has little

to no overshoot. When a clipped and rate-limited velocity

profile is integrated, the resulting position trajectory may

over or undershoot due to this non-linear system behavior.

The TMP accounts for the imposed limits inherently, and will

arrive at a static goal without overshoot. Table I describes

the three regions that make up the TMP.

TABLE I

TRAPEZOIDAL MOTION PROFILE REGIONS

Region 1 Accelerate at maximum acceleration in direction of goal
Region 2 Achieve and hold maximum velocity
Region 3 Decelerate to zero velocity to reach goal

The area under the velocity trapezoid in region 1-3 is

the total displacement achieved by the profile. By shaping

this profile based on initial and goal conditions, any goal

position can be precisely reached, even if velocity clipping

occurs. The shape of the profile can be challenging to

identify, since it is not always a trapezoid. For large velocity

and acceleration limits and small displacements, the profile

will only reach a fraction of maximum velocity, and will

be triangular. The varying shape of the profile means that

1522

calculating and storing complete motion profiles for each

update may be required. This paper’s method removes the

need for complete profile generation and storage.

Regions one and two of the velocity profile are bounded

by the maximum acceleration, am, and maximum velocity,

vm, respectively. In these regions the joint moves towards

the goal as fast as the limits allow. In region three the joint

has reached a deceleration distance ds from the goal. It now

accelerates at −am. When the velocity reaches zero, the joint

has exactly arrived at the goal position. dd is the integral of

the velocity profile in region three, given by (18).

As long as the distance to the goal dg and ds are equal

then the controller needs to decelerate at the maximum rate

to come to rest at the goal. Conversely, for the current goal

distance, there is a critical velocity vc such that, if the joint

began moving at this velocity in the following time-step τ ,

it could decelerate at am to reach the position goal. The

controller minimizes the error between vc and v0 at each

time-step.

Since the joint is moving with velocity v0 during a current

time-step, some initial distance di (19) is traveled before the

joint can be affected. Defining û as the sign of the distance to

the goal, vc is related to dg and di quadratically in (21). This

equation assumes simple trapezoidal integration. Solving for

vc using the quadratic formula generally produces complex

roots due to the possibility of negative v0 or dg . In (22),

v0 · û is the current velocity relative to the goal direction,

producing a positive term if the signs of both terms match.

This result will always produce a real value for v0 and dg .

ds =
v20sign(v0)

2am
(18)

di = v0τ +
vc − v0

2
τ (19)

û = sign(dg) (20)

v2c = 2am (dg − ds) (21)

vc = ûam

⎛
⎝
√

amτ2 − 4ûv0τ + 8|dg|
4am

− τ

2

⎞
⎠ (22)

III. EXPERIMENT

The goal of throwing a projectile was set to 3.0 m, the

maximum usable distance in the SISTR system as described

Ellenberg et al. [15]. The target is placed directly in front of

the robot. Using the SRM the release point for the projectile

motion calculations was set to the mean of the right arm’s

reachable area, 0.8m from the ground in z. This resulted in a

throwing velocity of 4.9 m
s at [Θ,Ψ,Φ] = [0.0o, 45.0o, 3.8o].

This velocity was required to be sustained for 0.1 sec due to

the speed and accuracy of the gripper’s release. This velocity

duration and direction forced the trajectory to produce an

underhand throwing gesture. The projectile is a standard

racquetball measuring 57 mm in diameter and weighting

42.7 g. The light weight racquetball ball was chosen to assist

in not causing instability. �Ld and the setup trajectory are

created using the method shown in Section II and following

all specified constraints. Fig. 3 shows �Ld and the setup

trajectory plotted within the SRM.

Fig. 4. Jaemi Hubo running throwing trajectory �Ld immediately after the

setup phase is completed. �Ld(0) is top left. Frames are read left to right
and have a Δt of 0.15 sec

The trajectory was run on Jaemi Hubo with a position

command period Tr of 0.01 sec. Fig 5 shows the side

profile of the Jaemi Hubo successfully running the trajectory.

The trajectory shown in Fig 5 is considered an underhand

throw, overhand and sidearm throws are also created with

this method.

Fig. 5. Jaemi Hubo running throwing trajectory �Ld immediately after the

setup phase is completed. �Ld(0) is top left. Frames are read left to right
and have a Δt of 0.15 sec

During the experiments the actual position of each joint

was recorded. The total time from the start of the setup phase

to the end of the velocity phase is 0.31 sec.

IV. RESULTS

The system successfully generated and ran valid tra-

jectories. The commanded trajectory produces the desired

velocity of 4.9 m
s . The joint position of the physical joints

1523

were logged during run-time. The logged and commanded

trajectories are seen plotted over the SRM in Fig. 3.

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

0
1
2
3

P
os

iti
on

 (r
ad

)

Right Shoulder Pitch Commanded and Measured
Motion Profile

Commanded
Measured

0 0.05 0.1 0.15 0.2 0.25 0.3
−50

0

50

V
el

oc
ity

 (r
ad

/s
ec

)

0 0.05 0.1 0.15 0.2 0.25 0.3
−5000

0

5000

A
cc

el
er

at
io

n
(r

ad
/s

ec
2)

Time (sec)

Fig. 6. Right shoulder pitch commanded and measured motion profile;
Position (top), Velocity (middle), Acceleration (bottom). This is the result
of running the trajectory shown in Fig. 4 and Fig. 5

The end-effector has large accelerations present in the

physical system because some of the actuators are com-

manded with accelerations and torques beyond the capa-

bilities of the physical actuator. The angular velocity and

acceleration of the right shoulder pitch joint can be seen

in Fig. 6. The large accelerations combined with the inertia

of the arm caused the joint to overshoot the commanded

position. This caused over-torque on the pitch joint causing

the joint to shutdown in slightly less then 10% of the trials.

V. CONCLUSION AND FUTURE WORK

As the results in Fig. 3 in Section IV show the approach

presented in this paper was successful for underhand throw-

ing. This approach also preforms overhand throwing if the

velocity direction, duration, and magnitude falls within the

SRM. While not presented in this paper, results of overhand

throwing will be presented in future dissemination of this

work. This work is also constructed in such a way that it is

easily applicable to other low and high DOF robots.

The paper described a solution that coincides with our

future efforts. The next logical step is to incorporate full body

motion and balancing to the velocity trajectory calculations

to further advance the overarching goal of full body end-

effector velocity control.

REFERENCES

[1] N. Kato, K. Matsuda, and T. Nakamura, “Adaptive control for a
throwing motion of a 2 dof robot,” in Advanced Motion Control, 1996.
AMC ’96-MIE. Proceedings., 1996 4th Int’l Workshop on, vol. 1, Mar
1996, pp. 203 –207 vol.1.

[2] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation:
Controllability, planning, and experiments,” Int’l Journal of Robotics
Research, vol. 18, pp. 64–92, 1997.

[3] W. Mori, J. Ueda, and T. Ogasawara, “1-dof dynamic pitching robot
that independently controls velocity, angular velocity, and direction
of a ball: Contact models and motion planning,” in Robotics and
Automation, 2009. ICRA ’09. IEEE Int’l Conference on, May 2009,
pp. 1655 –1661.

[4] T. Nakamura, “Search guided by skill in motion planning using
dynamic programming,” in Advanced Motion Control, 1996. AMC ’96-
MIE. Proceedings., 1996 4th Int’l Workshop on, vol. 2, Mar 1996, pp.
711 –716 vol.2.

[5] A. Sato, O. Sato, N. Takahashi, and M. Kono, “Trajectory for saving
energy of a direct-drive manipulator in throwing motion,” Artificial
Life and Robotics, vol. 11, pp. 61–66, 2007.

[6] T. Senoo, A. Namiki, and M. Ishikawa, “High-speed throwing motion
based on kinetic chain approach,” in Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ Int’l Conference on, Sept 2008, pp. 3206
–3211.

[7] S. Haddadin, K. Krieger, M. Kunze, and A. Albu-Schaffer, “Exploiting
potential energy storage for cyclic manipulation: An analysis for elastic
dribbling with an anthropomorphic robot,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ Int’l Conference on, Sept 2011, pp.
1789 –1796.

[8] Z. Wang, C. H. Lampert, K. Mulling, B. Scholkopf, and J. Peters,
“Learning anticipation policies for robot table tennis,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ Int’l Conference on, Dec
2011, pp. 332 –337.

[9] S. Schaal, S. Vijayakumar, S. D’Souza, A. Ijspeert, and J. Nakanishi,
“Real-time statistical learning for robotics and human augmentation,”
in Int’l Symposium of Robotics Research (ISRR01). Springer, 2001,
pp. 117–124.

[10] J.-S. Hu, M.-C. Chien, Y.-J. Chang, S.-H. Su, and C.-Y. Kai, “A
ball-throwing robot with visual feedback,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ Int’l Conference on, Oct 2010, pp.
2511 –2512.

[11] J. Kim, “Motion planning of optimal throw for whole-body humanoid,”
in Humanoid Robots (Humanoids), 2010 10th IEEE-RAS Int’l Con-
ference on, Dec 2010, pp. 21 –26.

[12] J. H. and Kim, “Optimization of throwing motion planning for
whole-body humanoid mechanism: Sidearm and maximum distance,”
Mechanism and Machine Theory, vol. 46, no. 4, pp. 438 – 453, 2011.

[13] M. Vukobratovic, “How to control artificial anthropomorphic systems,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 3, no. 5,
pp. 497 –507, sept. 1973.

[14] Y. Jun, R. Ellenberg, and P. Oh, “Realization of miniature humanoid
for obstacle avoidance with real-time zmp preview control used for
full-sized humanoid,” in Humanoid Robots (Humanoids), 2010 10th
IEEE-RAS Int’l Conference on, Dec 2010, pp. 46 –51.

[15] R. Ellenberg, R. Sherbert, P. Oh, A. Alspach, R. Gross, and J. Oh,
“A common interface for humanoid simulation and hardware,” in Hu-
manoid Robots (Humanoids), 2010 10th IEEE-RAS Int’l Conference
on, Dec 2010, pp. 587 –592.

[16] R. Ellenberg, D. Grunberg, P. Oh, and Y. Kim, “Using miniature
humanoids as surrogate research platforms,” in Humanoid Robots,
2009. Humanoids 2009. 9th IEEE-RAS Int’l Conference on, Dec 2009,
pp. 175 –180.

[17] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, Carnegie Mellon University, Robotics
Institute, Aug 2010.

[18] Z.-Y. Ying, Y.-G. Xi, and Z.-H. Zhang, “Test of the reachability of a
robot to an object,” in Robotics and Automation, 1989. Proceedings.,
1989 IEEE Int’l Conference on, May 1989, pp. 490 –494 vol.1.

[19] Z. Xue and R. Dillmann, “Efficient grasp planning with reachability
analysis,” in Intelligent Robotics and Applications, ser. Lecture Notes
in Computer Science, H. Liu, H. Ding, Z. Xiong, and X. Zhu, Eds.
Springer Berlin / Heidelberg, 2010, vol. 6424, pp. 26–37.

[20] R. Geraerts and M. Overmars, “Reachability analysis of sampling
based planners,” in Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE Int’l Conference on, Apr 2005, pp.
404 – 410.

[21] M. Vande Weghe, D. Ferguson, and S. Srinivasa, “Randomized path
planning for redundant manipulators without inverse kinematics,” in
Humanoid Robots, 2007 7th IEEE-RAS Int’l Conference on, 29 2007-
dec. 1 2007, pp. 477 –482.

[22] W. A. Wolovich and H. Elliott, “A computational technique for
inverse kinematics,” in Decision and Control, 1984. The 23rd IEEE
Conference on, vol. 23, dec. 1984, pp. 1359 –1363.

1524

