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Abstract. Manned rotorcraft are often employed in harsh environments and difficult

terrain that are inaccessible to other craft. Conversely, robotic rotorcraft are operated in

controlled settings, often at safe, high altitudes. Missions such as cargo delivery, medevac

and fire fighting are unachievable because of unpredictable adverse environmental con-

ditions. To enable UAVs to perform these missions, the effects of obscurants on UAV

sensor suites and algorithms must be clearly understood. This paper explores the use of

a laser range finder to accomplish landing zone identification in unknown, unstructured

environments. The ability to detect a landing zone in environments obscured by smoke is

investigated. This is accomplished using a design methodology of testing and evaluating in

a controlled environment followed by verification and validation in the field. This method-

ology establishes a concrete understanding of the sensor performance, thereby removing

ambiguities in field tests.

1 INTRODUCTION

Helicopters and other manned rotorcraft often perform missions that can not be ac-
complished by other craft. Their ability to fly and hover allows helicopters to access
remote terrain amongst obstacles like buildings, poles and trees. Pilots are able to per-
form missions such as cargo delivery, search and rescue, and fire fighting even when faced
with thick smoke and brown-out conditions.

Conversely, robotic rotorcraft are often confined to well structured, safe environments.
Missions such as surveillance are performed at high altitudes, safe from the threat of
obstacles on the ground. In other tasks such as building inspection, the rotorcraft is often
controlled by a pilot who has a constant line of sight to the aircraft. When these tasks are
made autonomous, the ambient conditions are often chosen to be idyllic without adverse
weather conditions. To enable UAVs to perform the missions carried out by manned
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Figure 1: The SR100 robotic rotorcraft hovers over an unsafe landing site. A laser range finder mounted
to the bottom of the craft is tested for its performance in smoke.

helicopters, the effects of obscurants on UAV sensor suites and algorithms must be clearly
understood.

In evaluating this problem, a baseline capability must be identified for testing. Landing
zone identification is an essential component to many rotorcraft missions. The problem
extends to tasks such as cargo delivery, medevac and search and rescue among others.
Landing zone identification is a thoroughly research problem, and many well developed
solutions already exist. Furthermore, the capabilities necessary for landing zone detection
are extensible to other core capabilities, such as obstacle avoidance and mapping.

Landing zone identification requires a sensor suite capable of mapping the ground
beneath the helicopter. Selecting a sensor suite for this task is complicated by the nature of
the environments in which these robots operate. Areas of interest such as urban landscapes
are cluttered with obstacles. Large structures like buildings can be easily detected by many
different types of sensors. Small obstacles like wires and sparse obstacles such as trees
and bushes can be more difficult to detect. These pose great risk to rotorcraft because the
exposed rotor is easily damaged, even by small objects. This potential hazard demands
a sensor suite capable of resolving small obstacles at far ranges.

Furthermore, the robot may be subject to adverse ambient conditions. Particles from
debris or smoke from fires can obscure the field of view of a sensor suite. When a rotorcraft
is landing, dust is often scattered, at times creating a brown out effect. To ensure that
performance is robust and reliable, these effects must be quantified when addressing the
issue of landing zone identification.

As a Future Combat Systems: One Team member, we have gained extensive experience
designing sensor suites for robots flying in near-Earth environments. The Future Combat
Systems (FCS) Class II program focused on building a UAV to fly missions in near-earth
environments such as urban terrain and forests. This project identified a few fundamental
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requirements for sensor suites.
The sensor must detect a wide range of obstacles. In urban terrain, object size and

composition can vary drastically, from buildings to telephone poles to thin wires and
clothes lines. In particular, sparse objects such as trees and bushes are troublesome to
detect.

The UAV will also encounter a variety of adverse environmental conditions, such as
the scenario depicted in Fig. 1. Smoke from fires or dust from down-wash can hinder the
performance of the UAVs sensor suite. Other environmental factors such as rain, fog, and
varied lighting can further degrade performance. The selected sensor must adequately
address these issues.

Our experiences in sensor suite design revealed that scanning laser range finders are
the best suited sensor to meet these criteria. Preliminary experiments against the criteria
stated above showed them to out perform common sensors such as sonar, computer vision
and optic flow.

The biggest attraction of these sensors is their high fidelity and wide field of view. Their
range is comparable if not better than many traditional sensors. Laser range finders are
also able to clearly detect many different objects including sparse objects such as trees
and bushes. Additionally, they are robust to varied lighting, encountering difficulties only
in extreme conditions such as direct sunlight measuring over 10,000 lux.

The major drawback to laser range finders is their sensitivity to obscurants present
in the air. Rain can cause reflections that appear to be thin obstacles. Additionally,
particulate matter such as fog, smoke and dust attenuate the laser beam and cause back-
scatter, making some obstacles undetectable. This detriment can hinder the operational
capabilities of the UAV.

Extensive work has been done to model the effect of obscurants. A model for the effect
of different kinds of smoke and various other obscurants is presented in [1]. [2] define
general equations for determining attenuation and back-scatter from a light source. Such
models can be used to correct for obscurants in laser range measurements.

Other researchers have directly measured the effects of fog and smoke on lasers. [3]
concludes that back-scatter from lasers is more affected by the amount of smoke and
fog than the wavelength of the laser. Even those these effects are well documented and
measured, there has been relatively little work towards applying the results to the problem
of building terrain maps and identifying safe landing zones.

Laser range finders have proven their capability for mapping cluttered terrain. In [4]
a laser range finder mounted to a rotorcraft is used to map buildings, bushes and trees.
Previous work has also demonstrated the ability to navigate rotorcraft based on these
maps. A LADAR sensor was used to map urban terrain in [5]. Obstacles as small as 6mm
diameter wires were successfully detected. This map was then used to autonomously guide
the craft through the environment. These experiments noticed effects from dust, however
the research did not extend to characterizing and correcting for these effects. Also, these
experiments did not explore using the LADAR generated maps to land the vehicle.
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Landing rotorcraft autonomously has been accomplished before. [6] successfully demon-
strated landing a rotorcraft utilizing GPS information and a vision based approach. The
same authors demonstrated the ability to land a rotorcraft on a moving target in [7] us-
ing similar techniques. Both of these results rely on predetermined GPS locations where
well marked fiducials are placed on the ground. Such well structured scenes would not
necessarily be available in a perch-and-stare or cargo delivery missions.

Algorithms for safe landing zone identification have also been presented and tested.
Both [8] and [9] present machine vision based approaches for identifying safe landing
zones. While the fundamental approach can be applied to any terrain map, the specific
algorithms assume images, which could be degraded by obscurants. In [10], an algorithm
is presented for identifying safe landing zones using a laser range finder. This body
of research shows that the individual components exist to detect landing zones while
accounting for adverse conditions.

This paper examines the effects of obscurants on identifying safe landing zones. A
method for determining a safe landing zone using a LADAR sensor on board a robotic
rotorcraft is presented. This method is comprised of a step in which the terrain map is
reconstructed from laser and position data, followed by a step in which the safest landing
zone in the terrain map is identified. A SICK LMS200 laser range finder was tested
and evaluated for varying densities of smoke inside a UAV testing facility. The sensor
model with and without obscurants was determined from these experiments. Verification
and validation was performed on board an SR100 robotic helicopter. Results from these
experiments are presented.

Section 2 describes the approach used to generate terrain maps and identify landing
zones. Section 3 describes the testing and evaluation of the SICK laser utilizing SISTR,
a Systems Integrated Sensor Test Rig. The robotic platform used for verification and
validation is described in section 4. Preliminary experimental results are given in section
5. Finally, conclusions and future work are discussed in section 6.

2 ALGORITHMS

To detect a safe area to land, the robot must first generate a map of its environment.
This terrain map is generated using the laser scans and pose measurements of the aircraft.
Vibrations from the helicopter and inherent noise/drift in the sensors can seriously degrade
the quality of the terrain map. To recover a usable map of the terrain, a mapping algorithm
must be applied that considers noise in both measurements. The resulting terrain map
is often comprised of large flat areas with both large and small obstacles. The landing
zone algorithm must find flat, obstacle free terrain with a large enough area to fit the
rotorcraft. The following sections describe the algorithms utilized to accomplish these
steps.
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2.1 MAPPING

To generate a terrain map, laser scans must be fused with relatively noisy pose mea-
surements. This is accomplished using an implementation of the process presented in [4].
The fundamental concepts and their application are presented here in brief.

This algorithm produces a 3D map of the environment given noisy pose and terrain
measurements. To find the corrected pose, a probabilistic model is constructed. This
model is comprised of: the probability of the pose measurement, the probability of differ-
ential pose measurements, and the probability of consecutive scan alignment.

The probability of pose measurement is modeled as the probability of measuring the
pose given the corrected pose. The system is taken to be 6 degrees of freedom, namely
the 3 Cartesian coordinates and rotations about those axes. Their measurement at the
current time step is the vector yt, while the algorithm solves for the corrected pose xt.
Given the measurement covariance A, the probability of yt given xt as presented in [4] is
then:

p(yt|xt) ∝ exp

(

−
1

2
(yt − xt)

T A−1(yt − xt)

)

(1)

The method also utilizes a differential model. Typically, the sensors onboard an aircraft
measure rotational and translational rates. The pose is recovered through integration,
making it susceptible to drift. The differential model is less affected by this error. Given
D, the covariance of differential measurements, the differential model as derived in [4] is:

p(∆yt|∆xt) ∝ exp

(

−
1

2
(∆yt − ∆xt)

T D−1(∆yt − ∆xt)

)

(2)

where ∆yt = yt−yt−1 and ∆xt = xt−xt−1. As differential measurements are more accurate
than absolute measurements, the covariance matrix D should represent a Gaussian with
smaller standard deviation than A.

The final portion of the model is a representation of the likelihood of a scan. Rather
than representing individual features as states as in traditional SLAM, the implementation
in [4] models the consistency between consecutive scans as:

p(zt|xt, xt−1, zt−1)

∝
∏

i exp
(

−1

2
min

[

α, minj(z
i
t − f(zj

t−1
, xt−1, xt))

T B−1(zi
t − f(zj

t−1
, xt−1, xt))

])

(3)

The goal of this model is to align points from the current scan with points from the pre-
vious scan. A point in the current scan zi

t is compared to all points from the previous scan
zt−1. The function f maps a point from the previous scan zj

t−1
into the local coordinate

system of the current scan zt. The inner minimization identifies a point from the previous
scan that is closest to the point from the current scan. The outer minimization thresholds

5



Keith W. Sevcik, Noah Kuntz and Paul Y. Oh

Figure 2: The sensor was scanned through a mock urban environment (left). Gaussian noise was added
to the pose measurement to simulate data gathered from a helicopter (center). The terrain map was then
reconstructed using the algorithm described (right).

this alignment to allow for local inconsistencies such as those from sparse objects. The
matrix B is the measurement covariance.

Equations 1, 2 and 3 can be combined to form the probabilistic model for the entire
problem [4]:

p(yt|xt)p(∆yt|∆xt)p(zt|xt, xt−1, zt−1) (4)

The map and pose are recovered by finding the pose that maximizes this likelihood, or
by minimizing the negative log likelihood given by [4]:

const + 1

2
((yt − xt)

T A−1(yt − xt) + (∆yt − ∆xt)
T D−1(∆yt − ∆xt)

+
∑

i min[α, minj (zi
t − f(zj

t−1
, xt−1, xt))

T B−1(zi
t − f(zj

t−1
, xt−1, xt))]) (5)

This minimization is found by first minimizing to associate points from the current
scan with those from the previous scan, and then performing hill-climbing to determine
the pose that minimizes the negative log likelihood. These steps can be iterated until the
negative log likelihood falls within a threshold.

This algorithm was tested on a data set gathered inside a mock urban environment.
A test was conducted in which the laser scanner was suspended approximately 2m above
the ground and oriented to face the ground. The sensor was then traversed through
the environment using a robotic gantry. The position of the laser was measured from
the gantry’s encoders. These conditions were well controlled and the measurements were
very accurate, unlike those of a rotorcraft. To simulate noisy pose measurements from
a helicopter, Gaussian noise was added to the position data. The results are shown in
Fig. 2.

As can be seen, the algorithm successfully recovers the terrain map in the form of
a point cloud. The algorithm is able to line up scans and correct the small deviations
between measurements. At the same time, it ignores the large deviations, recognizing the
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Figure 3: A terrain image is generated from the LADAR point cloud map. A cost map is then calculated
based on the slope of the terrain and the local roughness. The safe landing zone, marked with a cross, is
determined as the lowest cost area that fits the helicopter rotor diameter.

discontinuity is actually the ledge of a building. Obstacles such as the truck and cinder
blocks are clearly recovered. Even small features are resolved, such as the ridge in the
floor from overlapping floor mats. This terrain map can now be used to detect a safe
landing zone.

2.2 SAFE LANDING ZONE ID

The algorithm presented in [10] provides robust detection of a safe landing zone based
on the input of a point cloud terrain map from a LADAR scanner. This algorithm
parameterizes a safe landing zone based on the slope of the landing area and the surface
roughness. Costs are assigned to the terrain based on these factors, and the lowest cost
area which fits the helicopter rotor is selected. Our implementation of this algorithm is
described below.

Because of the design of the laser scanner, the resulting point cloud is an irregularly
spaced sampling of the scanned surface. A safe landing zone algorithm that uses this data
would be intrinsically complicated and resource intensive. To simplify the implementation,
the point cloud map is first converted into an image containing regularly spaced pixels.
First the size of the grid cells must be determined. The width of each grid cell, Cw, is
based on the angular resolution of the scanner θ and the average range to the surface R.
The total width of the grid, Gw, is based on the field of view of the scanner f and the
average range to the surface. The width of each cell, the total width of the grid and the
total number of cells n is then:

Cw = 2R tan(θ/2) (6)

Gw = 2R tan(f/2) (7)

n = Gw/Cw (8)
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The cell height was taken to be the same as the cell width. The total grid height Gh is
determined from the distance traversed in the direction perpendicular to the scan plane.
This formulation ensures there will not be multiple points per gird cell. After determining
the cell and grid sizing, the (x, y) coordinates of data points in the point cloud must be
transformed to (r, c) coordinates in the grid. This is accomplished using the relation [10]:

(r, c) = (y/Cw + Gh/2, x/Cw + Gw/2) (9)

The value of each grid cell is based on the z-coordinate of the points. Interpolation is
used to define cells that fall in-between points. The resulting 2D array is analogous to a
grayscale image who’s pixel values correspond to the height of the terrain. This image is
the raw elevation map.

To perform safe landing zone identification, the elevation map is separated into a
surface roughness map and a landing incidence angle map. Both these maps require that
an underlying smoothed surface first be determined. This surface is formed of by fitting
square planes the size of the helicopter rotor diameter to the terrain map. Planes are
represented as [10]:

n · x + d = 0 (10)

Where the fitted plane at cell x = (x, y, z) is described by (n, d) = (nx, ny, nz, d). These
planes are fit with an increment of 1/8 the rotor diameter between planes. The resolution
for the position of the chosen landing zone is therefore 1/8 that of the helicopter rotor
diameter. Smaller increments could be chosen to make this position more precise. This
would come at the cost of processing speed. Due to error in the accuracy of the helicopter’s
pose measurement, the chosen resolution is believed to be sufficiently accurate.

The landing incidence angle α is calculated using the fitted planes and the geodetic
normal of the surface ng [10]:

α = cos−1(n · ng/ ‖n‖ ‖ng‖) (11)

These fitted planes are also used to calculate the smoothed elevation map, where the
smooth elevation zs is given by [10]:

zs = −(nxx + ny + d)/nz (12)

Once the smoothed surface is generated, the roughness map can be determined. The
roughness map R(r, c) is calculated by subtracting the smoothed elevation map Zs(r, c)
from the original elevation map Z(r, c) and taking the mean [10]:

R(r, c) = |Z(r, c) − Zs(r, c)| (13)

A safe landing zone is chosen from a cost map. A cost is calculated for a region based
on a weighted sum of the roughness and the slope. The weightings are chosen such that
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Figure 4: Systems Integrated Sensor Test Rig (SISTR). SISTR provides a stage for testing and evaluations
of hardware to in simulated urban environments and disaster scenarios. Effects such as varied lighting,
rain, fog and smoke can be introduced in a controlled and repeatable fashion.

areas with a high roughness (and therefore obstacle rich) are avoided first. The remaining
areas are then avoided if the landing incidence angle is too high. These weights are chosen
based on the requirements of the platform.

By applying these algorithms successively, the rotorcraft can generate a map and locate
a place to land. However, it is still unclear how this process will be effected by environ-
mental conditions. A robust and reliable solution must consider the effect of obscurants.
The performance of these algorithms is directly dependent on the ability of the sensor to
measure the environment. To gain insight into how the algorithms will be effected, the
sensor was tested and evaluated to characterize its performance in smoke.

3 OBSCURANT TESTING AND EVALUATION

The path for evaluating UAV algorithms developed in the lab is to perform flight tests.
While flight tests are necessary to ensure the validity of the algorithm, unpredictable
conditions can often lead to inconclusive results. We choose to gain a full understanding
of the performance of our sensors and algorithms by introducing accliment conditions in a
controlled environment. This process of testing and evaluation gives a clear understanding
of how the sensor and algorithms operate. The flight test is then a verification of the results
measured in the lab.

3.1 SISTR

Assessing the performance of the sensor requires a testing facility capable of repeatably
and controllably simulating realistic environments. SISTR, shown in Fig. 4, is a National
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Table 1: SISTR VELOCITIES

Axis Velocity Range
X 0.012 - 0.61m/s
Y 0.019 - 0.61m/s
Z 0.021 - 0.61m/s

Science Foundation funded UAV testing facility that provides this capability. SISTR
measures 19 ft. x 18 ft. x 20 ft. enclosing a mock urban environment constructed at full
scale with actual materials such as plywood, brick and cinder blocks. The environment
can be augmented and reconfigured with other features such as poles, wires and trees to
test robustness to varying obstacles.

As described in [11], the facility is surrounded by a six degree-of-freedom computer
controlled gantry. Using the math model that describes the flight dynamics of an aircraft,
the gantry can be programmed to mimic the flight of a vehicle. Table 1 displays the
maximum and minimum velocities achievable by the gantry. While these velocities do not
represent the full range of velocities achievable by UAVs, they do encompass a portion
of the operating range for rotorcraft. The position in all translational axes of the gantry
can be controlled to within ±0.5cm.

Sensor packages can be mounted on SISTR and virtually flown through an environment.
Sensor data is collected in real time by the same control algorithms and software that
would be used in flight. The control commands are fed into a mathematical model of
the aircraft, which generates aircraft positions. These positions are then played back on
SISTR.

SISTR is also equipped with testing apparatus to simulate different environmental
conditions. There are some permanent fixtures. Stage lights placed near the top of the
facility can be individually controlled to create varied lighting scenarios. Light-blocking
curtains can be used to create night time conditions. Other environmental fixtures can
be added as need. A fog generator has been used to simulate obscurrants. In the past a
rain and dust machine [12] were created to simulate more extreme operating conditions.

3.2 SICK LMS200 LASER RANGE FINDER

The sensor we tested was the SICK LMS200. The LMS200 is a 2D scanning laser range
finder. A beam of laser light is projected onto a rotating mirror. This mirror deflects the
beam, creating a fan of laser light. Any object that breaks this fan reflects laser light back
to the sensor. The distance is calculated based on how long the laser takes to bounce
back to the sensor. The sensor is capable of performing scans at a rate of up to 75Hz.

The LMS200 utilizes a class I eye-safe laser. The wave length of the laser is 905nm.
According to the manufacturer, the LMS200 has a range of 80m with an accuracy of
±4cm and a 180◦ field of view with .5◦ resolution. This range is software selectable. The
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Figure 5: To characterize the SICK LMS200, the sensor was place inside the testing environment and
pointed toward a white sheet of paper placed 3m away. 500 data points were recorded without smoke
(top) and in smoke with a visibility of approx. 15m (bottom).

maximum detection distance can be shortened to increase the accuracy of measurements.
This sensor is very common among robotic ground vehicles, primarily because of its

wide viewing angle and relatively long range. As the research done in [4] and [5] suggests,
the detection range is well suited for rotorcraft operating in near-Earth environments.
One major drawback to implementing this sensor on a rotorcraft is its size and weight.
The LMS200 is 156 x 155 x 210mm and 4.5kg, the majority of the weight coming from
the ruggedized steel encasing.

From research in ground vehicles documented in [13] and [14], the SICK laser sensors
are susceptible to airborne particulate matter such as dust. Using SISTR, we sought to
quantify these effects.

3.3 OBSCURANT CHARACTERIZATION

One unique quality of SISTR is its ability to simulate weather conditions and other
disturbances. With test rigs constructed inside the facility, sunlight, rain, fog and other
effects can be generated in a controlled, repeatable manner. Testing conditions and stan-
dards were determined using the US military guidelines for all weather performance out-
lined in [15]. All military vehicles are held to these standards, including UAVs.

Military standards acknowledge that smoke, fog and similar environmental factors can
affect electro-optical systems. However, the standards fall short of defining requirements
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Figure 6: Histogram of characterization tests performed with and without smoke. Without smoke the
measurements are normally distributed around 300.05cm with a standard deviation of 1.11cm. When
smoke is introduced, the distribution shifts far to the left and the deviation increases, showing that smoke
blinds the sensor.

for these factors as these conditions are difficult to quantify. In this paper the amount of
smoke is qualitatively asserted based on the “visibility” through the smoke. This is given
as the distance that objects can be seen through the smoke.

The smoke was simulated using Superior Signal Company #3C smoke candles. These
smoke candles issue 40,000 cubic feet of smoke over 3 minutes. The substance is actually a
zinc-chloride mist, which is not the same content as naturally occurring smoke. However,
as suggested in [1], particle size plays a major role in dispersing light. It is therefore
assumed that the principle effect was still effectively modeled by this substance. This
infrastructure provides a solid basis for determining the sensor model in the presence of
obscurants.

To characterize the sensor, a sheet of white paper was placed 3m from the sensor
aligned at 90◦ (in the middle of the sensing range). 500 data points were recorded and
the resulting histogram plotted. Characterization was performed both with and without
smoke.

For the smoke test, part of one of the smoke candles was used. Since the testing
volume measured only 6,840 cubic feet, roughly 20% of the smoke candle material was
extracted and ignited. After some disappation, this produced smoke with a visibility of
approximately 15m. The testing environment with and without smoke is shown in Fig. 5.

The resulting histogram is shown in Fig. 6. Without smoke the sensor measurements are
normally distributed about the correct distance of 3m. The mean of these measurements
was 300.05cm with a standard deviation of 1.11cm. When smoke was introduced, the
distribution shifted far to the left. Measurements in smoke had a mean of 96.5cm with a
standard deviation of 3.63cm.

These results show that the LMS200 is blinded when the volume of its scanning area
is filled with smoke. These results are consistent with qualitative assessments expressed
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Figure 7: The SR100 robotic helicopter from Rotomotion, Inc. The SR100 is sold as a fully robotic
package capable of automated take off, landing, and GPS waypoint following.

from field tests of the sensor. The tests performed in the lab removed effects such as
distribution from wind and rotor down wash, undeniably confirming that the sensor can
not see through smoke. This information could now be used to interpret results of field
testing the sensor.

4 PLATFORM

Verification and validation of these test results was performed with a Rotomotion SR100
electric UAV helicopter, shown in Fig. 7. The SR100 is sold as a fully robotic helicopter
capable of performing autonomous take off, landing, and GPS waypoint navigation when
controlled from a laptop base station. Control from the base station to the helicopter is
routed through an 802.11 wireless network adapter.

The SR100 has a rotor diameter of 2m allowing it to carry a payload of up to 8kg. For
these experiments, we outfitted the helicopter with custom landing gear, a custom camera
pan/tilt unit, the SICK LMS200, a serial to Ethernet converter, and two 12V batteries
for payload power. In total we added approximately 7kg of payload. This greatly reduces
the flight time, which is up to 45 min without a payload.

The biggest attraction of this platform, however, is the fact that it is already outfitted
with all of the necessary sensors to calculate its pose. Gyros, an inertial measurement
unit, and a magnetometer provide the crafts attitude and heading. This information is
fused with a Novatel GPS system to provide position data. The position is reported as
Cartesian coordinates relative to a global frame, who’s origin is at the location where the
helicopter was activated.

With the pose information already calculated, this platform enables mapping and land-
ing zone identification using the algorithms described earlier.
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Figure 8: The LMS200 was attached to the bottom of the SR100 helicopter and flown over smoke. Results
showed that the LMS200 reflected off of the smoke, but was still able to locate flat terrain to land.

5 EXPERIMENTAL RESULTS

To determine the feasibility of performing mapping and safe landing zone identification
in the presence of obscurants, verification and validation of the SISTR tests was performed.
These tests were conducted at the research facility of Piasecki Aircraft. A location was
found which contained a desirable landing area surrounded by cluttered terrain. The
testing area used was a paved area surrounded by bushes and under-brush.

The helicopter was flown from a remote location, over the cluttered terrain, and into
the desirable landing area. Simple software was written which evaluated the area directly
beneath the helicopter to determine if it was flat. When the area was flat enough for the
helicopter to land, the software displayed the scan as being green.

An initial test was conducted in the absence of smoke. During this test, the helicopter
successfully identified the desirable landing area. Next, a smoke candle was placed in the
desirable landing area and ignited. The test was repeated, this time with smoke obscuring
the landing area. The results are depicted in Fig. 8.

As can be seen in the figure, the software successfully identified a flat region amongst
the obscured area. However, the right side of the scan shows a detected obstacle depicted
as a non flat region. Tests conducted in the lab confirmed that the sensor reflects off of
smoke. It is therefore concluded that down wash exposed part of the obscured area, while
the laser reflected off of the denser smoke.
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6 CONCLUSIONS AND FUTURE WORK

The results from the flight tests showed that the sensor detected a flat region amongst
a smoke obscured area. Since previous tests inside a controlled environment proved that
the sensor cannot see through smoke, it can be concluded that part of the obscured area
was dispersed by down wash. This conclusion is further supported by video from the on
board camera which suggests that there was smoke beneath the helicopter when a flat
region was detected.

Now that the effect of smoke has been characterized and observed in the real world, we
would like to incorporate these considerations into the algorithms outlined earlier. The
mapping algorithm contains probabilistic models for both the pose sensors and the laser.
The model of the sensor obtained from the characterization tests could be incorporated
into this algorithm. If the helicopter is known to be flying over an obscured area, this
model could be changed to match the conditions that the helicopter is operating in.

Furthermore, filters could be applied to the sensor data to remove noise from smoke or
dust. This implementation could be augmented by providing the helicopter with existing
terrain maps. In this scenario, laser scans gathered by the helicopter could be compared
to the previously acquired terrain maps. The difference in information could be used to
identify discrepancies in the two data sets. New obstacles that were introduced to the
terrain such as cars and trucks would consistently appear in the helicopter scans. Noise
from smoke or dust would appear inconsistent, and could then be filtered out.

However, the most plausible solution to this problem is to pair the LMS200 with a
sensor that as capable of penetrating smoke. Previous work has shown us that sonar
performs much better in the presence of airborne obscurants. If sonar is paired with the
laser range finder, when the helicopter enters obscured conditions, more emphasis could
be placed on the sonar data. We are currently in the process of investigating these avenues
to create a sensor suite capable of navigating a helicopter in obscured conditions.

This paper showed how a cohesive design process of testing and evaluating followed by
verification and validation can remove ambiguities in field testing robotic sensor suites.
The lessons learned from these tests can be extended to many different sensor types and
environmental effects. This framework provides a solid basis for developing UAV sensor
suites and sensing algorithms, thereby decreasing developing time and reducing risks in
field tests.
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