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Abstract

There are many features to take into consideration
when designing servoed vision systems especially when
redundant degrees-of-freedom (DOF) are present. Mo-
tion platforms mounted with camera systems usu-
ally have multiple joints. Example platforms include
rovers, booms, gantries, aircrafts and submersibles.
Teleoperating such systems to track moving objects
is particularly challenging. The operator is part of
the feedback loop and must the associated dynamics
and delays must be taken into consideration. Together
DOF redundancy one must resolve any potential mo-
tion conflicts arising from the shared man-machine
control. This paper identifies such dynamics and de-
signs an appropriate control system that leverages re-
dundant DOF in the visual-servoing loop. A simula-
tion and several experiments were performed to assess
its performance.
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1 Introduction

The term human-in-the-loop refers to systems where
an operator controls a device with a desired task. The
operator acts on the device depending on information
received from it and the environment. Some of these
devices like rovers, gantries, aircrafts or submersibles,
possess a video camera. The task is to maneuver the
camera to obtain desired fields-of-view. Such tasks
have applications in areas like broadcasting, inspec-
tion and exploration.

These devices often possess many degrees of freedom
(DOF) because it is important to capture as many
fields-of-view as possible. To overcome joint limits,
avoid collisions and ensure occlusion-free views, these
devices are typically equipped with redundant DOF.
Tracking a moving subject is a challenging task be-
cause it requires a well skilled operator who must

manually coordinate multiple joints. Hence, tracking
performance is limited by how quickly the operator
can manipulate redundant DOF. Figure 1 for exam-
ple, shows a typical broadcast boom and pan-tilt cam-
era head. Here, the operator can push and steer the
dolly, as well as boom, pan and tilt the camera. Our
particular interest is to apply visual-servoing; com-
puter vision is used to control some DOF so that the
operator has fewer DOF to manipulate. A description
of visual servoing can be found in [3]. An important
aspect of visual servoing is the delay which is inher-
ently involved [2]

As hardware we are using a 266MHz PC, an MEI ISA
card to drive the pan-tilt’s head DC motors, a Cog-
nachrome color tracker and a US Digital ISA board to
read the two encoders which retrofits the boom. Our
system consist of a four wheeled dolly, a boom, a mo-
torized pan-tilt head and a color camera. The boom
pivots on the steerable dolly to sweep the camera hori-
zontally and vertically. The mass of the pan-tilt head,
9.5 kg, and the camera, 1.7 kg, are counterbalanced
by a dumbbell of mass 29.5 kg.

Automated image centering with the boom can be
achieved by visually servoing the pan-tilt camera [1].
This would reduce the number of DOF the operator
must manipulate. The net effect would be human-in-
the-loop visual servoing. An experiment of tracking a
person was performed. A subject was asked to walk
back and forth in front of the camera and an opera-
tor was booming at 5 degrees/sec. The distance be-
tween camera and subject was about 5 meters. Some
pictures taken during the experiment are shown in
Figure 2. A challenge in [1] was the system’s sta-
bility, especially when the target and the boom were
moving 180 degrees out of phase. The main reason
is that the vision system had no information about
boom movement. As a result, the system could track
a slow moving target rather well, but would be unsta-
ble when the target moves quickly.



In this paper Section 2 model the human-controlled
boom. Inspired by [4] and dividing the system into
two parts, human-in-the-loop and pan-tilt unit, serves
to overcome instability challenges and lay the founda-
tion for designing a coupling algorithm in Section 3.
By taking advantage of the fact that the motion of the
human-in-the-loop is much slower then the motion of
the pan-tilt-head, this algorithm is able to counter-
rotate the camera and keep a stationary target in cam-
era’s field of view when operator booms. Simulations
and experimental results as well as conclusions with
a map of future work are presented in Sections 4 and
5 respectively.

2 Human-in-the-loop Modeling

Human-in-the-loop systems are characterized by de-
lays, which affect their performance. Sheridan and
Farrell [6] describe such parameters that need to be
taken into consideration to obtain an accurate model.
The first parameter is reaction-time delay tr also
known as the refractory-period. This parameter in-
cludes neural synaptic delays, and both nerve con-
duction and central processing times. This period is
about 0.15 seconds. The second parameter is the di-
mensionless gain K which varies between 2 and 20 at
low frequencies. The third parameter is neuromuscu-
lar lag. When a muscle is commanded to move, its in-
herent viscosity and inertia, combined with the asyn-
chrony of the fiber contraction, might be expected to
result in an exponential response. The muscle

moves with a time constant tn of 0.1 to 0.2 sec-
onds. Combining these parameters, a transfer func-
tion model of the human operated boom is

YH(s) =
F

θ̇REF − θ̇
=

K · e−s·tr

1 + s · tn
(1)

The input is the difference between the reference and
actual boom’s angular velocity θ̇REF and θ̇ respec-
tively. The output is the force F applied on the boom
by the operator. Assuming no friction and a rigid
structure for the boom we can write

M(t) = J · θ̈(t) (2)

where, θ̈ is the boom angular acceleration, M(t) is the
torque acting on the boom by the human operator and
J is the moment of inertia for the boom. The transfer
function of the boom is then

YBA(s) =
θ̈(s)

M(s)
=

1

J
(3)

Figure 3: The human-in-the-loop system

Figure 4: Boom side view

The block diagram of the human-in-the-loop boom is
shown in Figure 3. The closed-loop function for this
model will then be

G(s) =
θ̇(s)

θ̇REF
=

K · e−s·tr

K · tn · s2 + J · s+K · e−s·tr
(4)

where the input is the reference angular velocity of the
boom θ̇REF and the output is the actual value of it.
Replacing e−s·tr with its Taylor series, and neglecting
higher order terms (4) becomes

G(s) =
θ̇(s)

θ̇REF
=

K − K · s · tr
K · tn · s2 + (J − K · tr) · s+K

(5)

In order to derive the moment of inertia of the boom
depicted in Figure 1, the moment arm lengths were
measured. The results are sketched in Figure 4 and
result in the following

J = (mcam +mPTH) · l2
1
+m2 · l2s +m3 · l2

3
(6)

where mcam is the mass of the camera, mPTH is the
mass of the pan-tilt unit m2 = 11.7 kg, m3 = 15.8 kg,
l1 = 1.5 m, l2 = 0.66 m and l3 = 0.84 m. From (6),
J = 65.249 kg · m2. For tr = 0.12 sec, tn = 0.18 sec
and K = 20, (5) becomes

G(s) =
θ̇(s)

θ̇REF
=

20 − 2.4 · s

3.6 · s2 + 62.849 · s+ 20
(7)

To validate this model, a simulation and some ex-
periments were performed. There is good correspon-
dence between the simulated and experimental curves



Figure 1: Left: The human operator can boom the arm horizontally and vertically. Right: The 2 DOF motorized
pan-tilt head servos the camera.

Figure 2: Three sequential images from videotaping the experiment. Top row: camera field-of-view shows target
is tracked. Middle row: boom manually controlled. Bottom row: view from another camcorder



as seen in Figure 5. A step input of 30 degrees/second
was given to the system model. The angular velocity
of the boom is shown in Figure 5 (bottom). Sev-
eral people were asked to boom the camera and the
angular velocity was recorded. After the transient
regime dies out, the angular velocity of the boom
was almost constant. This was expected, consider-
ing that the heaviest parts are mounted at the end of
the boom. Observing that the transfer function poles
are s1 = −0.324 and s2 = −17.133 there is a domi-
nant pole. At low bandwidth, the human-in-the-loop
boom behaves like a first order system. The opera-
tor’s closed-loop transfer function in (7) can thus be
approximated as

G(s) =
e−s·α

T0 · s+ 1
(8)

where T0 = 3.1 seconds and α = 0.27 from [5].

3 The Coupling Controller

Previous experiments in [1] underlined a stability
challenge because the vision system had no infor-
mation about booming. To sidestep this and im-
prove performance, a coupling algorithm was designed
by taking advantage of the fact that the pan-tilt
head moves faster than the boom, approximately 90
deg/sec versus 20 deg/sec respectively. The algo-
rithm’s goal is to servo the camera when the target
moves or if there is any booming. Towards this, one
observes that the operator booms at a velocity given
by

θ̇(t) = (1 − e−
t−α

T0 ) · θ̇REF (9)

where θ̇(t) is boom’s angular velocity, θ̇REF is the
reference angular velocity of the boom, T0 is human-
in-the-loop time constant and α is a specific delay.
In Figure 5 there is a delay before the boom actually
moves. This is the delay associated with the refrac-
tory period discussed in Section 2.

A schematic depicting the top view of the boom is
shown in Figure 6. Assuming a stationary target one
can calculate the camera velocity needed to compen-
sate for boom rotation.

In Figure 6, L is the distance between the scene and
boom’s pivot, lBA is the length of the boom, γ is
the angle of the pan-tilt head rotates with respect
to the boom. Assuming that the operator will boom
such that Equation (9) is satisfied, then the value of
the pan-tilt head velocity which will compensate for

Figure 5: Human-in-the-loop step response simula-
tion (top) and experimental results (bottom). There
is a slight delay before motion begins and a 10 percent
steady-state error. Experiements show good correla-
tion with simulation.

Figure 6: Boom top view



Figure 7: The coupling block diagram. Based on the
boom’s angular velocity, the camera velocity is calcu-
lated

Figure 8: The simulated error angle for a boom com-
plete revolution

booming is given by

˙γ(t) = (
LlBA cos(θ) − l2

BA

L2 + l2
BA

− 2LlBA cos(θ)
+ 1) ˙θ(t) (10)

where θ is the angle of the boom with respect to its
initial position. A block diagram of this is shown in
Figure 7. Here, the input is the boom’s angular veloc-
ity (Figure 3) and the output is the camera angular
velocity. Figure 10 represents the coupling controller.
A dynamic simulation was performed to assess its per-
formances. The angle between the camera’s axis and
the line between the camera and the target’s center
(see Figure 6) was referred to as error angle ε. The
values of this angle were plotted versus time during
the simulation of a complete boom revolution. The
curve can be seen in Figure 8 and shows a maximum
ε of 0.5 degrees.

Taking into account that the scene was 4.5 m away
from the boom’s pivot, 0.5 degree represent an error

Figure 9: Boom Encoders

of about 15 pixels. This 0.5 degree error can be easy
compensated by visual-servoing. To check whether
the assumption of booming such that Figure 9 is sat-
isfied, several experiments were performed. The con-
clusion was that after the transient regime dies, the
boom’s steady-state angular velocity is constant with
an error in the range of 10% (Figure 5 bottom). This
value is still too big, especially because this value will
directly affect the camera’s angular velocity. Another
problem was to generate repetitive motion with con-
stant angular velocity. Experiments revealed that this
is difficult for operators to do. To implement the con-
troller, the boom was retrofitted with two encoders
for panning and tilting as shown in Figure 9.

4 Experimental Results

The coupling algorithm was implemented and sev-
eral experiments were performed to assess its perfor-
mances. The program reads the two encoders and
computes the new reference velocity of the pan-tilt
camera. The operator was booming while the target,
located at 4.5 m, was stationary. Pan and tilt angles
as well as pan and tilt errors were recorded during
booming. The plots are shown in Figure 10. It can
be seen that despite an error of 100 pixels, the tar-
get remains in the camera’s field-of-view. Delays and
the difference in the boom’s actually angular veloc-
ity and the one predicted by (9) contribute towards
the large error. The pan-tilt head will not be able
to keep the target in the camera’s field-of-view when
there are large accelerations. The coupling algorithm
was able to maintain the target in the camera’s field-



Figure 10: Pan and Tilt errors and angles

of-view when the angular velocity was small (about 5
degrees/sec). It follows that the vision system must
compensate for the movement of the target. The de-
sired camera velocity will be generated by the cou-
pling algorithm and image-based visual-servoing.

5 Conclusions and Future Work

This paper integrates visual-servoing for augmenting
the tracking performance of camera teleoperators. By
reducing the number of DOF that need to be manually
manipulated, the operator can concentrate on coarse
camera motions. A coupling controller was developed
and both simulations and experiments were performed
to estimate performances. Results are promising un-
der certain speed limits. Relaxing these limits will
demand alternative control techniques. Multivariable
discrete-time controller may be most suitable.
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