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Abstract— In this paper, we report lessons learned through
the design of a framework for teleoperating a humanoid robot to
perform a manipulation task. We present a software framework
for cooperative traded control that enables a team of operators
to control a remote humanoid robot over an unreliable commu-
nications link. The framework produces statically-stable motion
trajectories that are collision-free and respect end-effector pose
constraints. After operator confirmation, these trajectories are
sent over the data link for execution on the robot. Additionally,
we have defined a clear operational procedure for the operators
to manage the teleoperation task. We applied our system to the
valve turning task in the DARPA Robotics Challenge (DRC).
Our framework is able to perform reliably and is resilient to
unreliable network conditions, as we demonstrate in a set of
test runs performed remotely over the internet. We analyze our
approach and discuss lessons learned which may be useful for
others when designing such a system.

I. INTRODUCTION

The 2011 tragedy of Fukushima has shown the limitations

of state-of-the-art disaster response robotics. This led to

the 2013 DARPA Robotics Challenge (DRC) Trials, where

roboticists were invited to compete on eight tasks representa-

tive of those encountered in a disaster recovery scenario. To

achieve those tasks, highly mobile and dexterous robots were

required. Humanoids are especially well suited for the tasks,

as they take place in human environments. Furthermore,

to simulate a disaster scenario, the communication between

the operator and the robot was made unreliable. This setup

prevents operators from accessing sensor feedback at a high

rate, which limits situational awareness, and thus they cannot

accurately monitor the robot’s actions in real time.

The task considered in this paper consists of manipulating

an object whose size and location are not known a priori but

whose general shape is known. Thus, we need a framework

which is able to navigate the robot to a location where

the object can be manipulated, grasp locations must be

determined, and trajectories must be generated dynamically.

In this paper, we focus on our implementation for the

valve-turning task of the DRC, but we emphasize that our

This work was supported in part by the Defense Advanced Research
Projects Agency (DARPA) award #N65236-12-1-1005 for the DARPA
Robotics Challenge. Any opinion, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of DARPA.

Fig. 1: The operator identifies and localizes a valve in a point cloud
using an interactive marker (left), visualizes the motion planned
to maximize the turn angle of the valve by testing multiple hand
placements before execution (right).

framework can be adapted to other humanoid manipulation

tasks, as discussed in Section III-D.1.

Our framework is composed of four primary components:

(1) an operator-guided perception interface which provides

task-level commands to the robot, (2) a motion planning al-

gorithm that autonomously generates robot motions that obey

relevant constraints, (3) a data aggregation and “unreliable

communication teleoperation” toolkit, which we have release

as an open-source package [1], that limits the traffic on the

data link and makes the system resilient to network dropouts

and delays, and (4) an operational protocol that dictates how

the team of operators must act to operate the robot.

Our implementation of the framework allows operators to

specify the manipulation task in a straightforward manner

by setting the pose and dimensions of the object to be

manipulated in a 3D display of the point clouds acquired

by the robot, as shown in Figure 1. The system then allows

operators to plan a feasible trajectory, and once they have

validated it using a previewing system (also shown in Figure

1), send it to the robot for execution. Even though this close

monitoring of the motion planner could potentially be slower

than a more autonomous approach, we believe the gains

from exploiting the situation awareness capabilities of the

operators enhance the overall reliability of the system. Also,

this loss in efficiency is acceptable as our intent is not to

solve manipulation tasks at high speed.

This paper does not focus on providing novel techniques

for robot control. Instead, we provide a description of our
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system design and how the design changed from autonomy to

teleoperation over time. We discuss what we learned through

the design process that could be useful to others, including

why some standard techniques could not surpass the ability

of well-trained operators on critical tasks, such as localizing

objects in point cloud data or monitoring errors in trajectory

execution. We also discuss the performance and limitations

of our motion planning and control approaches as well as

alternative approaches for teleoperating the task.

II. RELATED WORK

Prior work in the area of disaster recovery robotics [2],

[3] has revealed the need for better group organization,

perceptual and assistive interfaces, and formal models of the

state of the robot, state of the world, and information as

to what has been observed. In this work, we focus on the

problem of teleoperating a single humanoid robot remotely

under unreliable communication.

A. Teleoperation of humanoids

Teleoperating a humanoid robot involves controlling ac-

tions such as head motions, grasping and manipulation

of objects, and navigation. The case of teleoperating a

humanoid robot is particularly difficult due to the high

number of Degrees of Freedom (DoFs) and the constraint

to maintain balance. A recent survey on teleoperation for

humanoids can be found in [4], in which the authors list three

types of challenges to teleoperate humanoids, two of which

are relevant for disaster recovery: 1) physical properties of

humanoids (e.g., high DoFs, morphology) and 2) operator-

based (e.g., situational awareness, skill, and training). This

paper addresses both types of challenges.

There are many architectures that attempt to tackle the

problem of manipulation performed by a robot with a mobile

base [5]. The problems present in these mobile manipulation

tasks include where to place the robot in relation to the

object to be manipulated [6], how to grasp the object [7],

and how to plan the robot’s movements [8]. To the best of

our knowledge, there is no available framework for humanoid

robots, unlike UAVs or rovers, that is tailored for operator-

guided object manipulation in unstructured environments

with limited communication to the robot.

B. Managing autonomy in teleoperation

Any robot to be teleoperated presents a certain level of

autonomy. Managing this autonomy is crucial in the design

of a teleoperation system. Supervisory control [9] defined by

Sheridan [10] as a process in which “one or more human

operators are intermittently programming and continually

receiving information from a [robot] that itself closes an

autonomous control loop through artificial effectors to the

controlled process or task environment” provides a good

framework to classify different control approaches. However,

other terminologies and methodologies have since emerged

to describe ways of managing the robot’s autonomy, the three

most relevant for our task are defined in [4]:

Fig. 2: Hubo2 Plus (left) in a simulated environment and DRCHubo
(right) at DRC trials turning a lever valve

1) Direct control: The operator manually controls the

robot; no autonomy is involved on the robot side. The robot

is controlled in a master-slave interaction. For example, a

direct-control approach is the control of each DoF of a

manipulator using a joystick.

2) Traded control: In traded control the operator and the

robot both control the robot’s actions. The operator initiates a

sub-task or behavior for the robot and the robot performs the

sub-task autonomously while the operator monitors the robot.

For instance, in [11] an interactive robot is teleoperated by

selecting a state for the robot to act. Our approach is based

on traded control in that the operator only specifies the target

valve to initiate the sub-task, which is then performed by the

robot using autonomous motion planning.

3) Collaborative control: This mode corresponds to high-

level supervision where the robot is considered to be a peer of

the operator. The role of the operator shifts from an operator

who dictates every movement, to a supervisor who guides

at a high-level. This approach is often used for unmanned

systems controlled from a central command post [12], [13].

When a team of operators controls a robot in either of

those modes the strategy is called “Cooperative”. The method

presented in this paper is a form of Cooperative Traded

Control. In Section V we discuss our approach and compare

it to alternative control strategies.

C. Teleoperation with low-bandwidth

Highly unstructured disaster environments, such as those

we target in this work, provide a challenge where communi-

cation can be difficult due to the unknown properties of the

building materials, making transmission and reception of sig-

nals unreliable [14]. The framework we present in this paper

is meant to operate seamlessly with a latency between zero

and five seconds, with packet loss and periodic dropouts that

are analogous to communication in a demolished building.

Low-bandwidth communication covers a broad range of

research, which can be categorized by the amount of delay

that the system attempts to handle. Typically, these categories

are roughly 0-2 seconds, 2-10 seconds, and greater than 10

seconds latency [15]. For instance, many surgical systems

operate between zero and two seconds of latency sometimes

across distant locations [16]. Latency greater than two sec-

onds is typically found in research related to earth orbit or

farther systems, such as Lunar robots [17], [15]. Latency

greater than ten seconds extends even farther including the

Mars rovers, which have a delay of many minutes [18].
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Fig. 3: System diagram showing data flow through the framework. Operator interaction is shown in green boxes.

D. Service-Oriented Architectures

The framework we present has been developed within

a Service-Oriented Architecture (SOA) which consists of

distinct software modules that communicate with each other

[19], [20], [21]. We chose ROS [21] for its ease-of-use and

visualization tool (RViz).

III. FRAMEWORK DESCRIPTION

Our framework is intended for high-DoF robots. We have

applied a preliminary version of it to PR2 and Hubo2 Plus

robots [22]. In this paper, we describe an application to

the DRCHubo robot, developed by the Korean Advanced

Institute of Science and Technology (KAIST). DRCHubo has

two 6 DoF legs, two 7 DoF arms, and a 2 DoF head. The

hands each possess three fingers controlled by a single DoF.

DRCHubo is equipped with a sensor head mounted with a

tilting Hokuyo LIDAR for providing point cloud data and

three cameras for stereo vision.

For legged and high DoFs robots such as DRCHubo,

movements of the upper body can make the robot unbal-

anced. As a result, it is important to consider the center of

mass when generating the motions. However, to be able to

turn valves with high friction and stiction, the robot must

use its maximal capabilities (i.e., using both arms). Thus,

the hands must move in a coordinated manner. Our motion

planning component, based on the CBiRRT algorithm [8],

is able to account for those constraints given the pose and

shape of the manipulated object.

A. Architecture

The framework’s architecture, shown in Figure 3, shows

the data flow through the system. Software modules running

on the robot are shown on the left (yellow), while those

running on the operator workstations are shown on the right

(blue). On the robot, the data aggregation system reads sensor

output and packages it into compact messages. The control

system receives and executes trajectories.

On the workstations, the Graphical User Interface (GUI)

displays data received from the data aggregation system to

the operators. The GUI allows an operator to specify the

object pose and dimension and send commands to the motion

generation systems. Finally, the motion trajectories from the

walking generation and the manipulation planning systems

are sent to the robot through the data link.

The implementation of the framework relies on ROS [21]

for the communication between modules, RViz for the user

interface, and OpenRAVE [23] for the motion planning and

pre-visualization of trajectories. The walking generation code

is based on KAIST’s Rainbow walking framework.

All data transmission between the robot and the work-

station happens over ROS, however we have implemented

our own data-link software to throttle data rates and limit

communication to only necessary information.

B. Addressing Unreliable Robot-workstation Comms.

1) Data Aggregation: The primary function of the data-

aggregation system is to reformat sensor data used on the

workstation so that communication across the restricted

datalink is limited. As shown in Figure 3, it simultaneously

processes camera images, point clouds, encoder values, and

force sensors allowing the framework to be highly modular

and quickly adaptable to different robots, as well as being

suitable for both real and simulated environments. The

system can also be reconfigured during operation to handle

changes in the available sensor data, such as selecting an

alternate image or point cloud source, or changing the quality

of data received.

2) Low-level control: For communication with Hubo’s

motor controllers we use Hubo-Ach, which is an open-

source daemon process that uses a high-speed, low-latency

IPC called Ach [24]. Hubo-Ach implements a real-time loop

in which all of the motor references and state data are set

and updated respectively. The bridge component of the data

aggregation system combines joint angle and motor control

sensor values read through Hubo-Ach and republishes them

as ROS messages. The head sensors (i.e., camera and LIDAR

for DRCHubo), are directly controlled through ROS nodes.

3) Data Link: Even with limited data over the link,

communication between the robot and the workstation can

break when operating under high latency if not handled
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properly. Hence we have developed an overlay of ROS’s

communication protocols that is resilient to unreliable net-

works (i.e., dropouts, and high latency), which we have

released as open-source software [1].

The primary components of the teleoperation datalink

system are rate-limiting repeaters and relays that allow fine-

grained control over the network demands of our system.

These relays, based on ROS’s non-persistent service calls,

replace the simple equivalents provided in ROS and imple-

ment automatic detection of network failures, notification and

warnings to the operator, and automatic recovery of broken

network sockets. For instance, the rate-limiting repeaters

allow for data published at a “native” rate of 200Hz on-board

the robot to be forwarded to the operator’s workstation at a

low rate of 10-20Hz, reducing network demands.

In the data throttling component, the user configures

compression quality and publishing rates. Black and white

camera images are compressed by setting the image resolu-

tion and compression quality. Point clouds produced from

LIDAR scans are compressed using a voxel filter and a

selection of point cloud compression algorithms including

ZLIB and PCL’s Octree-based compression [25]. Using this

approach, we can reduce the data usage of point clouds

by over 95%. To avoid flooding the limited data-link with

unnecessary data, camera images are requested at only 0.5Hz

and point clouds are individually requested by the operator.

A new request is attempted only when the previous data

request has completed, which means that new data requests

are never delayed by old data still being transmitted. To

provide transformations between various frames of the robot,

an ROS TF tree is maintained on the robot using the current

joint state. To limit unnecessary communication of those

frames through the link, a separate tree is reconstructed on

the operator workstation from joint state data, which requires

only a small fraction of the data needed to continuously

synchronize the TF tree.

Data No Compression ratio 1 ratio 2 Freq. used

Joint State 0.82 KB - - 10Hz
Camera 5120 KB 230 KB 4.97 KB 0.5Hz

Pointcloud 10 MB ≈ 100 KB ≈ 50 KB On demand

TABLE I: Data sizes, compression ratios, and frequencies

Table I reports the data sizes and frequency used for

publishing over the link. The compressed camera frame

correspond to lower resolution (320x240) with JPEGs com-

pression ratio for ratio 1 and ratio 2 of 50 and 20, re-

spectively. The compression of point cloud corresponds to

the compression algorithms mentioned above with no voxel

filtering for ratio 1 and voxel size of 0.02m for ratio 2.

C. User Interface

When teleoperating the robot, the operator must be able to

monitor the robot state as well as its surroundings to maintain

situation awareness. Thus, our GUI, shown in Figure 4,

provides monitoring capabilities through 2D camera images

as well as a 3D display of the robot configuration and point

cloud data. The user can switch what data is displayed on

Fig. 4: Screen capture of the Graphical User Interface (GUI). 1)
video feed of the lever and round valve, 2) display of point cloud
and interactive marker, 3) planner-settings panel.

screen using RViz’s built-in features. In addition to sensor

data, the GUI displays the motion planner error conditions

and the system’s state through panels, text, and color codes.

The operator controls the robot by specifying a set of

parameters that are sent to the motion planner and the walk-

ing generation module (i.e., end-effector pose constraints,

turn angle, etc). We use interactive markers [26] and control

panels to determine and input those parameters. Distance and

direction for the walking generation are determined using an

interactive marker. Valve size, turn amount and which arm(s)

to use for the manipulation task are determined using both

an interactive marker and the control panels. Before querying

the motion planner, all parameters can be verified at a glance

by looking at the control panels.

Interactive markers (see Figure 1) provide six-DoF han-

dles, three translation DoFs and three rotation DoFs, which

enable the operator to quickly define a pose in a 3D display.

Since we use interactive markers to simultaneously select

and localize the object to manipulate, we avoid the use of

complex object detection and localization algorithms, instead

relying on the operator for these capabilities. The shape

attached to the interactive marker can be a cuboid, a disk, or

a triangle mesh. To specify the pose and dimensions of an

object (e.g., lever or disk valve) the operator aligns the shape

to point cloud data using the interactive marker. In the DRC,

when localizing the valve for walking to a standing position

in front of it, the pose estimate does not have to be as precise

as for manipulation, usually only requiring one or two DoFs

to estimate the walking distance. Hence, the average time to

align the marker over one trial while operating the robot was

9.3 secs for walking and 41.6 secs for manipulation.

Once the object is localized and the planner parameters are

selected, the operator can send a planning request. The main

tab of the planner-settings panel provides basic commands

for the motion planner and robot controller. The operator can

command which sub-task to plan for (i.e., go to manipulation

configuration, turn valve or go back to walking configuration)

after which he/she can request a pre-execution visualization

of the motion trajectory in a dedicated 3D GUI component

(see Figure 1) by clicking a button. This visualization limits

potential mistakes made by the operator as well as dangerous

3770



robot behavior. Another button lets the operator trigger the

robot motion by sending the trajectory over the network to

the robot controller. A second tab (see Figure 4) lets the

operator specify the turn angle, turn direction (i.e., clock

wise or counter-clock wise) and which arm combination to

use (i.e., left, right or both).

In addition to operator input and feedback, the GUI con-

trols the data flow over the unreliable link to the robot. The

operator can request point clouds and turn on/off the camera

image request loop. Thus, data from the robot is transmitted

only when necessary to minimize communication.

D. Motion Planning and Execution of Trajectories

Once the object pose and dimensions are set by the

operator, the operator can generate the robot’s motion using

the motion planning component. The paths produced by the

motion planner are collision free and respect end-effector

pose and balance constraints.

1) Motion Planning: For valve turning, each manipulation

task involves three subtasks : 1) Ready: a full-body motion

that sets the robot’s hands close to the valve ready to grasp it,

with knees bent, lowering the center of gravity to be more

stable, 2) Turn: An arm(s) motion that grasps the valve,

performs a turn motion, releases the valve and returns to

the initial configuration (so it can be repeated without re-

planning), 3) End: a full-body motion that brings the robot

back to the walking configuration. While these motions are

specialized for valve turning, the motion planner can be

easily reconfigured to manipulate other objects by inputting

a different set of constraints [8].

The motion planning component of the system is based on

the CBiRRT algorithm [8], which is capable of generating

quasi-static motion for high-DoF robots subject to end-

effector pose and balance constraints. CBiRRT generates

collision-free paths by growing Rapidly-exploring Random

Trees (RRTs) in the configuration space of the robot while

constraining them to constraint manifolds. Average planning

times of CBiRRT for each subtask are reported in Table II.

Valve type Ready Turn End

Lever 1.91 (1.11) 0.99 (0.39) 1.72 (0.91)
Circular 2.71 (1.12) 2.72 (1.55) 2.38 (1.72)

TABLE II: CBiRRT average and st. dev planning time in seconds
for DRCHubo on the three valve turning subtasks.

In the valve turning task, the motion must obey constraints

defined by the valve pose provided by the operator (see

section III-C). The end-effector pose constraints are then

specified by Task Space Regions (TSRs) [8] that CBiRRT

uses to represent pose constraints. TSRs consist of three

parts:

• T
0

w
: transform from the origin to the TSR frame w;

• T
w
e

: end-effector offset in the coordinates of w;

• B
w : 6 × 2 matrix of bounds in the coordinates of w:

In our implementation for valve-turning, we have defined

three tasks that the robot can perform: 1) turn a lever with the

right hand 2) turn a lever with the left hand 3) turn a circular

Fig. 5: (a) Start and (b) goal configurations maximizing the turn
angle for a two-handed rotation of a round valve. (c) Full motion
obeying end-effector pose constraints computed by CBiRRT.

valve with both hands. Each of these tasks corresponds to a

specific TSR constraint definition.

In all cases, inverse kinematics [27] is performed to find a

whole body configuration given the location and radius of the

manipulated object. The TSRs are then defined according to

the hand locations when grasping the object and the pose of

the object. For instance, the TSR for one-arm lever motions

is defined as follows:

T
0

w
= T

valve

w

where T
valve
w

is the valve pose in the world.

T
w

e
= (T valve

w
)−1

∗ T
H

w

where T
H
w

is the hand pose in the world when grasping the

valve.

B
w =

[

0 0 0 θ 0 0
0 0 0 0 0 0

]T

where θ is the desired rotation angle of the lever. When

planning for full-body motions, we also define TSRs for the

feet to keep their position and orientation fixed in the world.

In order to perform large turns on the circular valve, we have

implemented an algorithm that iterates through interpolated

hand placements along the valve to find valid start and goal

IK solutions that maximize the turn angle (see Figure 5).

2) Trajectory Execution and Control: The path generated

by the motion planner is first re-timed using piece-wise linear

interpolation before being sent over the data link to the

control system. Trajectories are executed aboard the robot

by feeding waypoints at 200Hz to the on-board controllers,

which track the waypoints with PID controllers running at

1KHz. The operator is informed of the end of the trajectory

execution by a monitoring system based on an ROS Action

Server that returns success or failure if the robot has reached

the end of the trajectory in the time constraints.

E. Human-Robot Interaction and Team Command

Due to the number of modules, the complexity of the

system would generate too much cognitive load on a single

operator. Thus, we have defined a multi-operator scheme that

enables us to safely and accurately manage a task such as

valve turning while being time efficient. In our multi-operator

approach, each member is assigned a particular function (see

Figure 6), and we make use of checklists and a “playbook”,

summarizing failure cases and possible strategic decisions to

be made, to dictate the operators’ tasks. An explicit chain

of command is adopted to clarify responsibility and improve

responsiveness in a failure case.
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Captain GUI op.

Robot process op.Network monitoring op.

Fig. 6: Operator roles while teleoperating DRCHubo on the valve
turning task at DRC trials.

The team roles were the following:

1) Captain: dispatches the different sub-tasks to the other

operators and keeps track of the current strategy (e.g., the

order in which to perform the environment scans, where

to walk, and the manipulation tasks). This operator should

have a good understanding of the system as well as precise

knowledge of the fallback strategies stored in the “playbook”.

2) GUI operator: prepares queries for the motion planner

by localizing the objects (e.g., valves) using interactive

markers, sends the trajectory to the robot after visualization

(section III-C). This operator waits for approval by the

Captain before executing planned motions.

3) Robot process operator: starts and monitors the soft-

ware running aboard the robot (i.e., control and data ag-

gregation systems). After launching three scripts in separate

terminals, this operator monitors the terminals for errors and

provides immediate diagnosis for the captain if any occur.

4) Network monitoring operator: Network communica-

tion with the robot can degrade dramatically, thus it is

necessary to have an operator monitor the current network

conditions using software that estimates the latency in real

time. This operator can help the captain in his/her decisions

to request a point cloud, which can overload the data link if

made in a period with high latency.

As the operators’ mental load is reduced using this co-

operative control approach, adopting these roles enhances

the robustness of the control process. Each operator is only

responsible for a small number of tasks and the critical

operations are monitored by at least two operators (i.e.,

the Captain and the operator responsible for the action).

We also make use of a communication protocol where the

name of the target operator is called prior to communicating

to reduce the risk of mis-communication. For instance, in

the valve turning task, when the captain asks if the robot

computers have received the trajectory, stating the robot

process operator’s name avoids ambiguity in the request

which could unnecessarily load the other operators.

Reducing the cognitive load of each operator enables

acting in a safer and more effective manner. We believe

team operation of a humanoid robot is especially efficient

in scenarios where the robot must act under strong time

constraints. Such operational modes are commonly found

when operating large vehicles such as tanks or aircraft [28].

Fig. 7: Evolution of the task specs. provided by DARPA: Left:
initial environment, Center: second specification with horizontal
and vertical valve placements at different heights, Right: final task
description with only vertically placed valves at a single height.

IV. TESTING

We conducted tests over the course of two months, (eleven

separate testing sessions) consisting of performing the valve

turning task in an environment similar to Figure 7b. The tests

were performed over the internet using a VPN connection,

with the robot at Drexel in Philadelphia, USA, and the

operator workstations at WPI in Worcester, Massachusetts,

USA. The VPN connection incorporated delays and dropouts

inherent to common long distance telecommunications. Each

test was divided in two phases: setup time and run time.

Depending on the time taken by setup, we ran between one

and three trials per session. The average setup time, run time

and results are reported in Figure 8.

We defined the score of our test to be similar to DRC

conditions. However, since the task specification and score

rubric published by DARPA changed multiple times our

scoring rubric did not match the one used at the DRC trials.

In the first phase of the tests we focused on turning a large

circular valve three full turns. DRC rules were changed

later to require only one turn on three valves in the setting

presented in Figure 7c. Our rubric was:

• 1 point - Grasping the valve

• 2 point - One Turn

• 3 point - Three Turns

Figure 8 reports the evolution of the average setup and

run times in minutes, as well as the average scores. During

the first test sessions, our code was unstable and startup was

largely manual, as illustrated by the high setup and run time

and the low average points. However, after the first two test

sessions the average number of points per run was 2.26, setup

time was 21.6 minutes and run time 24.92 minutes. These

results indicate that we were able to perform over one turn

of the valve at each trial and shows the overall reliability of

the framework. On test seven we could not score points due

to hardware failure in the setup increasing our setuptime and

preventing us from completing a valid run.

On the last run (i.e., test 11 not reported in Figure 8) we

integrated the walking component from KAIST and adopted

the final scoring rubric provided by DARPA. We aimed at

turning three different valves in a setting similar to Figure

7c. On that test run the operational protocol as well as the

software framework were the same as those used in the

challenge. We scored four points by turning each valve a

full turn within 30 minutes and not requiring intervention. At

the DRC trials, we succeeded in turning the lever, however,
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the robot lost balance when we attempted to turn the second

valve and we were unable to score the remaining points.

V. LESSONS LEARNED

The framework presented in Section III is the result of

design and testing cycles in which significant trade-offs have

been made to maximize its performance on the valve-turning

task. The iterations of the DRC rules regarding bandwidth

limitations and mock-up specifications acted as a moving

target to our development. Initially, the vague requirements

for operating the task, shown in Figure 7, encouraged us

to implement a more autonomous approach. However, as

the requirements became more precisely defined (e.g., no

obstacles, only horizontal valves) and as autonomous tech-

niques proved to be less reliable than direct input from the

operators, we moved back from autonomy towards a more

direct teleoperation approach. In this section, we discuss

the reasons behind this shift for three core components of

our system: motion planning, error detection, and object

localization. We then discuss our cooperative traded control

approach in relation to other teleoperation approaches.

A. Motion Planning

Motion planning is an essential component for robot

autonomy. However, motion planning requirements depend

largely on how much the workspace is structured (e.g.,

presence of multiple obstacles), physical and kinematic pro-

prieties of the objects to be manipulated, and the capabilities

of the robot itself.

1) Placement Planning: When the environment is un-

structured, it is crucial to account for the robot’s manipu-

lation capabilities when selecting the placement location to

perform a manipulation task. We pursued an autonomous

solution to that problem based on reachability maps [29].

However, we found that a skilled human operator was

able to determine a successful placement faster than the

autonomous algorithm given a structured environment (i.e.,

with no obstacles, see Figure 7c). In this case, a simple

estimate of distance to the valve from the point cloud data

using an interactive marker by the operator was satisfactory.

2) Manipulation Planning: CBiRRT is able to account for

obstacles as well as kinematic and balance constraints and

thus can produce statically-stable motions. It was very effec-

tive throughout our testing. However, the algorithm does not

account for the uncertainty on the manipulated object pose

which is introduced by imperfect sensing. In the initial set of

tests, the robot collided with the valve when performing the

End operation, causing it to fall. Methods exist to account for

uncertainty in sampling-based planning, however, we found

that a simple solution based on adding way points in the

reaching and extraction trajectories was sufficient. The way

points are placed before grasping and after releasing the

manipulated object, and the object’s volume is augmented

when planning motion to and from those way points. This

procedure guarantees that the arms keep a minimal safety

distance with the object to be manipulated. We found this

solution effective enough to avoid collisions with the valves.
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Fig. 8: Average setup time and run time in minutes (left) and
average of points scored over 10 testing sessions (right). A test
session comprise one to three tests.

B. Error detection

Errors in trajectory execution (i.e., when the task is

not performed as intended) can be identified by using the

dynamic programming technique Dynamic Time Warping

(DTW) to match executed trajectories against a library of

known successful and unsuccessful trajectories [22]. DTW

iteratively calculates the best alignment between elements

of two or more time sequenced data [30] and produces a

metric that quantitatively represents the similarity of those

sequences to either the successful or unsuccessful class,

which facilitates error detection during execution.

This error detection procedure was replaced by a simple

monitoring of camera images by the operator. Indeed, this

technique gives reasonable results on average (i.e., correct

identification rate of 88%, the false positive rate was 10%

and the false negative rate was 16% on the PR2), but even

this high rate of performance can be easily surpassed by an

experienced operator.

C. Object Localization

We avoided object detection because we did not have an

appearance model of the object (i.e., color, the exact shape),

however localization in a point cloud can be performed by

the Iterative Closest Point (ICP) algorithm when given a good

initial guess by the operator. ICP “snaps” the points on the

surface of the object to the nearby points in the point cloud.

Despite our original plan to use ICP, the approach pre-

sented in Section III-C relies on the operator for both

detection and localization of objects by aligning shapes to

the point cloud data. In practice, operator localization of an

object without using ICP was found to produce faster and

more accurate results than using ICP. Indeed, ICP found the

object pose quickly when given a good initial guess [22],

however, due to the sparsity of the data the operator often

needs to provide several initial guesses, making the process

slower than specifying a precise pose directly.

D. Robot autonomy and teleoperation

The teleoperation method presented in Section III is an

instance of cooperative traded control [4], which relies on an

intermediate level of autonomy of the robot. This approach

has two main advantages: traded control allows a more

precise task specification, while cooperative control allows
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operators to maintain better situation awareness. We also

experimented with a direct control approach as a fallback

system for our framework, which requires less autonomy

(i.e. substituting the motion planner for direct operator input

from the GUI). As expected, this teleoperation mode was

significantly slower than the control mode presented in

Section III. From discussions with other teams competing

in the DRC, it was indeed possible to use direct control

for valve-turning, along with stored end-effector trajectories

(e.g., a circle) to execute the turning motions (this is possible

because the specifications for the valve locations were re-

leased not long before the competition). To perform the task

with this strategy, the robot needs good balance control and

arm strength to overcome the mismatch between the stored

trajectory and the true valve pose and dimension – this is

not the case of DRCHubo.

Another way to control the robot is by using collaborative

control (similar to high-level supervision). Though this was

our initial aim, as suggested by our experience, in such a

system some critical components may be less reliable or

slower than direct human operation. As a result, it is unclear

if state-of-the-art techniques would enable the system to

outperform a cooperative traded control approach.

VI. CONCLUSIONS

We have presented a framework for teleoperating hu-

manoids robots to perform manipulation tasks with limited

communication and demonstrated its effectiveness in a set

of test runs. The framework consists of software modules

running on-board the robot and on remote workstations

which are connected through a custom data-link. Operators

can specify the manipulation task using interactive markers

to localize objects in point cloud data. Statically-stable

trajectories are then planned which are collision-free and

respect end-effector pose constraints. We have also defined

a protocol to teleoperate the robot with a team of operators.

We have analyzed our approach and discuss lessons learned

designing our system which resulted in several steps back

from autonomy. Our experience suggests that the key to

designing an efficient teleoperation system is to identify

where a well-trained operator can surpass the performance

of software components to get the best of both autonomy

and human expertise.
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