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Abstract— Humanoid robotics development often depends on
simulation and prototypes for new walking algorithms. The
advantages of simulation such as low cost and risk make
repeated experiments and development more straightforward.
However, real world implementation can require extensive
porting to move from a simulation environment to a hardware
platform. This tedious task can be a huge time sink that
drastically slows development cycles. This paper describes a
way to eliminate this bottleneck. By developing standardized
protocols for motors and sensors, a software controller can
communicate with both platforms using the same interface.

I. INTRODUCTION

For the last few years, the state of the art in humanoid
research has been full-size humanoids such as Honda’s
ASIMO[1], KAIST’s Hubo [2], and the HRP-2[3]. These
robots are capable of subtle, sophisticated motions that, in
many cases, equals the dexterity of humans. These robots
can interact with humans using vision, speech recognition,
gesture recognition, and even touch sensing.

Unfortunately, these capable tools are very difficult for
smaller labs to acquire and use. Large humanoids are expen-
sive (on the order of 500 000 USD) and delicate custom-
built machines. They require careful, expert assembly and
maintenance to produce consistent results. A humanoid’s
weight and strength means that safety equipment is often
necessary, and falls can be expensive to repair. The cost and
complexity of these machines creates high barriers to entry
into the humanoids field, and effectively retards development
by discouraging talented researchers who simply do not have
access to the hardware.

The obvious solution to the problems faced by humanoids
(expense and complexity) is to attempt alternative approaches
to the full scale robots. Engineers commonly use the tech-
niques of both scaling and simulation to address problems
of this nature.

Scaling has already been established in the literature and
culture of the humanoids community. This suggests that
miniature humanoids provide a valuable platform for certain
topics. The stated goal of RoboCup is to field a competitive
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artificial soccer team by 2050[4]. Towards that end, the com-
petition includes a miniature class to cut development costs
for competitors. Similar competitions such as Robogames
and RoboOne also value the miniature humanoid, as both a
stepping stone and a source of insight into problems such as
obstacle avoidance[5].

Simulation eliminates the risks and costs of working
directly with a humanoid. Virtual environments are easily
shared and duplicated, making it easy to collaborate with
distant researchers on complex problems. Popular simulation
packages such as OpenHRP3[6], USARsim[7], and Webots
[8] are powerful tools for prototyping walking gaits and
gestures. They can simulate rigid body dynamics, collisions,
and sensors.

While scaling and simulation can be used to guide re-
search, they can never prove the reliability of an approach
when implemented on a full-sized robot. The only certain
verification is to take the techniques developed using alter-
native methods and apply them to the full scale machine.
In doing this, however, one of the main benefits of the
alternative methods, speed, is lost. The software architectures
of the three approaches, along with important intermediaries
such as trajectory generation and inverse kinematics, differ
widely. To move from one system to another under present
conditions can require as much as, if not more, time than
researching the original question.

To address the problem, this paper details efforts to create
a platform and tool set which will allow researchers seam-
less transitions between the three approaches. The platform
consists of an open set of hardware and software humanoids
(full-sized Hubo, scaled Mini-Hubo, and simulated Virtual
Hubo). The tools include controller software that is portable
between the three, scalable trajectory generation, and flexible
inverse kinematics.

The open humanoids architecture, detailed in Section II,
describes a three-pronged approach to the issue of hardware
accessibility. The first mode of access introduces a system
for researchers to remotely experiments on a full-sized hu-
manoid robot. The second is an open design for a low-cost
miniature humanoid that includes physical and production
specifications. The third is a humanoid simulation platform
that includes full models of the full and miniature robots.

Among the included tools in this effort is a software
framework, detailed in Section III, which attempts to address
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the issue of controller portability across the platforms. The
work examines presenting the hardware to the programmer
in something akin to the state space approach. This contrasts
with many hardware abstraction systems in robotics, which
tend to abstract hardware at the behavioral level (e.g. ’move
forward’, ’turn left’). Section IV explains the design of a
scalable Zero Moment Point walking controller based on
established methods. Section V rounds out the work by
describing an inverse kinematics engine that can handle
variations in geometry and joint layout between the various
humanoids used in the system.

II. SUPPORTING HARDWARE

A. Full-Sized: Hubo

The primary goal of this work is to make the transitions
between the various forms of humanoid robots as seamless
as possible. An additional aim is to make experimentation
with any single platform maximally efficient. For full-sized
humanoids, the primary hindrance to experimentation is their
own size and delicacy. Slips and falls can cause significant
damage, taking many hours to return the robot to a usable
state. Even with an ideal outcome, the robot must still be
manually reset for subsequent experiments. Experience with
Drexel’s Jaemi Hubo, a version of the KAIST humanoid,
supports this notion.

In order to resolve this issue, an automated safety harness
was designed to follow the robot without interfering directly
with its motion. The harness follows the Hubo by measuring
the location of the Hubo’s head and moving itself such that
it is positioned to catch the Hubo should a fall occur, while
not interfering with the operation of the system otherwise.
(Figure 1).

The harness has been implemented within a room-sized
3 Degree of Freedom (DOF) gantry robot as described
in [9]. The end effector of this robot can move within a
6x6x3 meter enclosure. The enclosed environment provides
an isolated space for experiments, allowing operators to
customize environmental conditions such as lighting. With
the harness attached to the end-effector, the Hubo can freely
walk within this area at much-reduced risk.

To sense the head’s motion, a small thread is connected
between the gantry arm and the Hubo’s head. As the head
moves, it gently pulls the thread to one side (Figure 2). This
thread passes through a tube attached to a small gimbal, and
is gently pulled taut with a light return spring. The pull due
to movement tips the gimbal arm, measuring the angles with
respect to the ground normal. By measuring the extension of
the thread, and decoupling the measurements, an estimate of
the head’s displacement is possible. The sensor’s low force
actuation and mechanical connection ensure that the position
is always measured, but with a minimum of disturbance to
the robot’s balance.

Knowing the displacement of the sensor thread, and the
angles of the thread with respect to each vertical plane, the
true head displacement is found by simple geometry (1). The
2D displacement vector ~r can be derived from the sensor
using this formulation,

Fig. 1. Jaemi Hubo supported by safety harness connected at the shoulders.
A small thread is attached to the head, between the harness ropes. The
motion of this thread is measured to track the head displacement, which
allows the harness to follow, keeping the ropes slack.

~r = (z0 +∆z)
(

sin(Kvvx)
sin(Kvvy)

)
(1)

where x is a horizontal displacement component, ∆z is the
change in length of the sensor string, and Kv is a constant
converting sensed analog voltage to sensor angle.

Similarly, the displacement in the Z direction is given by
(2), where Z is the actual distance in the z-axis from the top
of the head to the harness base. This feedback, along with a
simple PID controller, causes the harness to follow the head
at a safe distance. The controller’s gains are tuned for a slow,
damped response, so that the harness does not track small
changes in head motion.

Z =
√
(z+ z0)2 − r2 (2)

Crash detection is an important feature of the harness,
so that it does not simply follow the robot in a fall to the
ground. During normal operation, tracking velocity is limited
by the controller to a safe bound. If the robot falls, it will
exceed the tracking speed of the harness. This sudden motion
will pull the support ropes tight, while the load is absorbed
by a soft spring. The compression also triggers a switch,
indicating a crash. Now the software can intervene, pausing
the experiment and lifting the Hubo to safety.

The gantry includes power and network connections to the
Hubo to help automate other experimental chores. A combi-
nation of external cameras and logging of the robot’s internal
communication gives a complete picture of its current state.
Our hope is that these features will largely eliminate human
intervention, allowing safe remote operation with minimal
local supervision.
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Fig. 2. Hubo harness drawing, showing the angle the thread makes as the
head moves side to side. A n arm mounted on a joystick gimbal senses this
angle.

B. Scaled Size: Mini-Hubo
In addition to providing easier access to the full scale

robot, this work also seeks to provide a ready toolkit for
experimentation with miniature humanoids. Miniatures have
the advantage that they are far less expensive than their full
sized counterparts (systems commonly sell at near the 2000
USD price point). This allows even small laboratories to
obtain and experiment with the systems.

Towards this end, our team, lead by collaborators at
Virginia Tech [] have developed a ‘Mini-Hubo’ which has a
joint layout that mirrors the layout of the full sized version.
Roll/pitch/yaw order is identical for a given joint, though the
limb lengths and motion range vary between the two. The
end effect of this is that only the transformation matrices
involved in inverse kinematics change, while the form of the
equations remains the same.

While working with such a scaled system can save sig-
nificant effort, the relationship between platforms becomes
complicated. Key scaling issues include:

• Kinematics: Limb length and joint arrangement
• Dynamics: moments of inertia and mass differences
• Mechanical strength and stiffness
• Actuator power-to-weight ratios

C. Simulation: Virtual Hubo
A third approach towards increasing the accessibility of

humanoids platforms is in providing a simulation environ-
ment for both the miniature and full sized robots described
earlier. Physical models which account for the robot’s full
geometry, mass, and inertial properties have been created
using the Webots (which back-ends to the Open Dynamics
Engine) simulation environment.

The complexity of environments that can be simulated is
limited. Common simplifications are to assume rigid bodies,
flat surfaces, and ideal servo motors. Tasks such as rough-
terrain walking may need extensive testing with a real robot

to produce accurate results. After this investment, however,
simulations provide repeatability and reproducibility not pos-
sible with hardware. They can also give a rapid assessment
of the effectiveness of a base gait to check for things
like physical interference before moving on to the actual
hardware.

III. ADDRESSING SOFTWARE PORTABILITY

The bridge between the three different approaches (full
scale, miniature, and virtual) to humanoid development
stands within the software that runs each. It is obvious that
the same driving mathematics underlies each approach, but
if the researcher cannot move these equations seamlessly
between the three platforms, he/she is effectively crippled.
It is easy, when using such complex systems, to spend more
time implementing motor drivers, sensor interfaces, and real-
time subsystems, than on the actual algorithms to be tested.

To fix this problem, this work includes a common software
interface to the three methods of development. Sadly, stan-
dard packages such as Player/Stage[10], Microsoft Robotics
Studio, ROS (the Robot Operating System)[11], etc. would
only be marginally useful under these circumstances. These
robot development environments are mostly built to work
around the robot as a black box. They are targeted at
implementing complex but high-level algorithms such as
vision processing, navigation, path planning, and human
interaction. Because of this focus, the environments provide
little assistance in coordinating physical motions.

The greatest shortcoming of modern robotic development
environments is a misconception about what is an atomic
operation for a given robotic system. Current development
environments approach the problem by asking a designer
to implement the mechanics needed to perform high level
behaviors, such as ’take a step’, ’turn 20◦ right’, or ’ac-
celerate at 1 m

s ’. This approach is adequate for statically
stable robots (e.g. tracked or four wheeled vehicles), but
has little meaning for robots which are statically unstable
but can dynamically stabilized. Designs involving legged
robots such as humanoids, quadrupeds, or hexapods have
contextual meanings for such high level operations. In these
systems, a careful orchestration of actuators must be made in
order to maintain stability. The interplay between high level
commands (step forward) and the actuation pattern needed to
carry them out is not always obvious. An excellent example
of this situation is the BigDog[12] robot, where the rough
terrain environments the robot is designed to handle means
that an instruction like ’forward’ has very different actuator
interpretations depending on context. Fortunately, resolving
this problem requires only a simple shift in thinking about
the system.

A. State Space Inspired System Presentation

The solution involves abstracting the hardware of the
system in terms of the common mathematical representations
used to model robots. In other words, the key to moving
seamlessly between the three humanoid platforms is express-
ing the controllers, in code, in a format similar to the state
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space representation. It is a way of presenting the low level
hardware (sensors/actuators) in terms of these states.

The approach is based on providing the user (the pro-
grammer who is implementing the control algorithm) with
access to the physical properties of the robot in terms of the
state variables. Each state variable of the robot (e.g. elbow
position, torque at the elbow motor, etc) can be accessed
through a programmatic variable which can provide history,
the present state, and future projections of the state. This
allows the controller to be expressed in terms of the more
theoretically common state-space approach, as opposed to
the common procedural programming constructs.

The mechanisms which enable this representation are
somewhat complex, but worthwhile to achieve the state vari-
able representation to the end user. Since the entire system
is built within the context of a real-time operating system,
each distinct component is represented as a unique task. A
task is associated with its own thread, which can be run
in parallel with other tasks’ threads, and possesses its own
stack space (memory storage area). The task-based design
is an inherently flat, non-hierarchical one. While a layered
structure is introduced in describing the system, each task is
capable of bypassing this structure to deal with exceptions -
providing flexibility to the design. The layers of the design
are as follows: state-variable access layer, communications
protocol layer, and a hardware gateway layer.

The uppermost layer of the program is the portion avail-
able to the author of the control system: the state variables.
The operations of interest for a state are reading, writing,
and prediction. A state is initialized with a data structure that
provides the identifying information of the underlying hard-
ware. This could be hardware identification numbers, Internet
addressing numbers, etc. Using this identifying information
the state can make requests to the hardware, through the
protocol, in order to sample the state (read) or alter the state
(write). The state variable is also designed to automatically
store a history of previously sampled values, so they can be
used for averaging or predictive algorithms.

The next layer is the communications protocol layer.
When each state is created, it is registered with a protocol
instance based on the type of hardware it is communicating
with. This protocol understands how a data stream must be
constructed to communicate with the physical hardware that
will provide the requested information. Since multiple states
can be associated with the same physical hardware (e.g.
a motor torque state and a motor rotational velocity state
both exist for a single motor) the protocol is designed to
be capable of accepting requests from different states and
combine them into efficient (in terms of bus usage) requests
to the hardware.

The protocol itself receives a reference to a hardware
communication object which serves as a gatekeeper to the
physical bus. Since the design of the system is real-time and
task based, and therefore tasks can interrupt one another, al-
lowing multiple protocols direct access to the bus could result
in scrambled, intermixed requests on the bus. By buffering
and funneling these requests through a gatekeeper task, the

design assures that messages cannot become scrambled.

B. Application to Humanoids

how this system adapts itself to humanoid robotics is
the next obvious question to address. The user (who is the
controller designer) initializes a number of state variables,
each one corresponding to the degrees of freedom of the
machine. For the case of a humanoid robot these would
include states for each of the motor position and/or velocity
states, the motor currents (equivalently torques), the angular
and linear rates associated with any inertial measurement
units, etc.

Each state will be tied to an appropriate protocol which
will handle its communication with the actual hardware. For
the motor related states: Since all motor controller hardware
will likely be located on the same electrical bus all these
states will reference the same protocol. This protocol will
handle issuing the appropriate byte-stream to the hardware
to make the requests as well as condensing the requests to
facilitate efficient usage of the bus. The protocol passes the
byte stream it design along to a hardware object, which acts
as a gatekeeper for the actual physical bus.

The described system lends itself well to scaling in
humanoid robotic applications. The user will write any
upper level functions based on the state variables. He has
the flexibility to write controllers directly in terms of his
state variables, or can generate any amount of higher level
controller based on these state variables. In scaling the
humanoid platforms, the hardware involved (motors, inertial
measurement units, etc) is changed but the states involved
remain virtually unchanged.

The joint layout of the robot remains nearly identical,
and thereby allows the representation at the state layer (and
therefore any controllers or infrastructure built on top of it)
to be maintained. The hardware instances change, but only
within a limited range. Since most hardware devices will
enumerate within the operating system as character devices,
few changes are required to port this level of the control.
The only major change which must be made when shifting
between humanoid platforms is the protocol layer, which
must be redesigned to support manufacturer specifications
for the particular motor used.

IV. TRAJECTORY GENERATION

At a high level, similarities between robot platforms and
simulation structure can be advantageous. Despite gross dif-
ferences in mass and size, for example, both Mini-Hubo[13]
and Jaemi Hubo[14] can perform simple dynamic walking.
A popular method, the Zero Moment Point (ZMP)-based
algorithms used for these robots has a simplified model of the
humanoid body, bypassing many of the scaling issues identi-
fied. In the simple point-mass, inverted pendulum model used
in [2], the only parameters are the overall robot mass, and
the height of the center of gravity. Scaling this algorithm
is very direct because of its simplicity, but it does require
tuning to compensate for the simplifying assumptions.
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Because of the simplifying assumption that robot body
behaves as an inverted pendulum, the moment of inertia and
masses of the legs are not modeled. While the effects of the
leg swing on the body motion are real and require tuning
and/or feedback control to eliminate, it is beyond the scope
of this project. Our initial strategy designs out the problem
with a slower walk and lower posture to improve stability.

One walking cycle consists of a pair of steps of arbitrary
length. The apparent step length is specified for each step.
If the step had started from ideal posture, the foot would
land such that it was 1

2 of the step distance past the hip
at the end of the step. The trajectory generator subtracts
the difference between the actual and ideal initial pose to
produce this outcome.

Fig. 3. Foot trajectories relative to the hip motion, showing alternate lift
& landing using sinusoidal (Z) and cycloidal (X) motion.

In general, turning while walking forward introduces a
centripetal acceleration component, which in turn affects
the zero moment point location. While it is possible to
reformulate the ZMP equation with additional accelerations
factored in, a first approximation was developed using a
simple hip yaw offset.

To complete a turn, two footsteps are required. The first
step leads the turn, which requires that a left turn begin with
a left step, and vice-versa. In the first step, each hip yaw
joint’s yaw constraint is given an opposite offset, following
a cycloidal amplitude. The following step inverts this path,
bringing both legs’ yaw angles back to zero (Fig. 4). These
angles are specified for the solve as the Y-components of the
foot’s X vector in the global frame.

V. INVERSE KINEMATICS IMPLEMENTATION

A trajectory calculated for a full-scale humanoid robot
must be adjusted to fit the range of motion of a miniature
humanoid robot. Varying limb reach and collision boundaries
also affect the range of achievable motions. To effectively
move across platforms, these limits must be parametrized

Fig. 4. Simple hip yaw offsets for low-velocity turning

such that they are either compensated for in the design of
the trajectory, or online using a learning algorithm.

Ideally, the inverse kinematics(IK) solution is transparent
to the end user. In the proposed software framework, the state
handler automatically runs the IK to translate from Cartesian
space to joint space. When polling sensed foot position, the
corresponding forward kinematics can be called as part of the
handler to automatically produce the data from the measured
joint angles. Unfortunately, these functions are specific to the
kinematics of each robot. To quickly develop the necessary
solver functions, a MATLAB program was developed to use
robot dimensions and joint order to generate a custom IK
solver as C code.

To prototype the solution method, an inverse kinematics
solver based on the pseudoinverse and selectively damped
least squares methods in [15] was created in MATLAB.
The symbolic math toolbox is used to create the constraint
equations in symbolic form. The equations in general are
functions of the joint angles and link parameters. The so-
lution of the least squares model uses the singular value
decomposition of the Jacobian to simplify the computation.
A common method for calculating the least squares estimate
simplifies the actual inverse by inverting only the S matrix.

The general skeleton of the mini-hubo and Jaemi Hubo has
6 DOF in each leg, with the order of rotation joints common
to both (Fig. 5). In the hips, ankles and shoulders, multiple
joint axes intersect at a point. The rotation of the first link of
each limb can be contained on a spherical surface about this
point. With the robot’s torso as a frame of reference, there
are 4 kinematic chains to be solved. Full specification of leg
motion requires each foot’s position in space (3 constraints),
plus the foot’s orientation in space (3 constraints). The arms
each need a space constraint at the wrist. This gives a total
size of the Jacobian of 18x21.

Once the torso’s position in space is specified, the IK
problem could be solved independently for each limb with
respect to the torso. While this approach is efficient (no
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Fig. 5. The kinematic skeleton of the Mini-Hubo robot, used to implement
the inverse kinematics solver. Shown are 6 joints each for the legs, the hip,
and 4 joints for each arm.

Jacobian is larger than 6x6), it does not optimize the torso
rotation with respect to the hip. If a large step is needed,
for instance, rotating the torso yaw joint aligns the hips with
the direction of the step. The resulting Jacobian matrix thus
takes the block form of (3).

Jrobot =

Jlegs,12x13 0 0
0 JLarm,3x4 0
0 0 JRarm,3x4

 (3)

VI. CONCLUSION

The gaps between humanoid robots and their simulations
currently require a significant effort to compare results in a
meaningful way. The software structure currently in develop-
ment will eliminate this delay, allowing both simulation and
hardware to be refined simultaneously. By simplifying the
porting of humanoid control and algorithms, the framework
proposed will allow fresh collaboration between otherwise
alienated researchers and robots.

The biggest outstanding goal of the system is to com-
plete the abstraction layer between the hardware bus and
the software controller. Several technical hurdles must be
overcome for this to be possible. As more humanoids are
added the the system, each new computer architecture and
communication bus will require its own set of protocols. The
standard framework will reduce the amount of repeated work
done, providing a significant time savings in implementation.
The utility of the entire system will grow as new protocols
are added, multiplying the value of each future contributors’
work.
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