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Abstract— Miniature humanoids are becoming an increas-
ingly common platform for humanoid robotics research and
education. However, the prohibitively high cost of advanced
platforms such as the ROBOTIS-OP2 drives many educators
and small research institutions toward cheaper options such
as the ROBOTIS-Mini. While these platforms have versatility
in full-body motion, they often lack computational power and
vision capabilities. This paper presents the augmentation of
the ROBOTIS-Mini with a camera, local processor, and net-
worked system for computer vision. This augmented platform
is referred to as Mini-CV. The Mini-CV system provides an
ultra low-cost solution for computer vision that reduces the
need for high on-board computational power and provides an
advanced framework for networked control. A study of the
latency in the system is presented and compared to that of the
ROBOTIS-OP2, a popular miniature humanoid that retails for
more than 20x the price of our augmented system. The results
demonstrate the viability of the Mini-CV as an ultra low-cost
alternative to more expensive miniature humanoid platforms.

Index Terms— Humanoids, Computer Vision, Network, Low-
cost, Latency.

I. INTRODUCTION

The price point of popular research platforms for full-size
humanoid robotics ranges from hundreds of thousands to
several million US dollars [1]. At such a high cost, these re-
search platforms are not accessible to the population at large.
Miniature, rather than full-sized, humanoid robots offer a
more cost-effective alternative. Miniature humanoids, such as
NAO or ROBOTIS-OP2, can serve as testbeds for algorithms
that will later be ported to full-sized humanoids or they can
be used to develop applications specifically for miniature
humanoids. Even though these miniature humanoids are
priced much lower than full-sized humanoids, they are still
priced out of reach for anyone with a budget of less than
several thousand dollars. In order to make humanoid robotics
platforms more widely accessible to interested students and
researchers, these platforms must be available at lower price
points without sacrificing important capabilities.

Several ultra low-cost miniature humanoids have emerged
in recent years that offer high degrees of freedom (DoF),
but no vision capabilities. For instance, RoboPhilo Junior is
a miniature humanoid robot platform with a price tag of $300
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Fig. 1: ROBOTIS-OP2 (Left) and Mini-CV (Right)

developed by RoboBrothers?. It is equipped with 10 servo
motors and an ATmega32-16PU controller. Moreover the
user can expand the original RoboPhilo’s mobility by adding
extra DoF. UBTech’s Alpha 1S Humanoid Robot, costs
around $500 and has 16 high precision servos. In addition,
this robot uses a STM32-F103RDT6 processor with stan-
dard 128 MB external memory and Windows/iOS/Android
system compatibility®. Despite these attractive features, the
RoboPhilo Junior, Alpha 1S, and most other low-cost minia-
ture humanoids do not have computer vision (CV) capabil-
ities. This important gap should be addressed in order to
give more researchers and teachers access to CV-enabled
robotic testbeds and accelerate the development of CV-based
algorithms and controls.

The ROBOTIS-Mini is a miniature humanoid platform
developed by ROBOTIS at the accessible price point of 500
USD. Similar to Alpha 1S, ROBOTIS-Mini has 16 DOF
and a built-in microcontroller. ROBOTIS-Mini was selected
over Alpha 1S because of its RAM of 1GB and ability
to interface with Android 2.3.3 (Gingerbread or greater),
an increasingly popular OS among robotics researchers[2].
While the ROBOTIS-Mini is already an attractive, low-cost
platform for research and education, it lacks vision capability.
This paper proposes an inexpensive method of augmenting
the ROBOTIS-Mini with computer vision capabilities such
that the platform can be used for a greatly increased range of
applications. With less than $50 in components, the already

4Robobrothers-Robotics, 4749 Bennett Dr, Livermore, CA, USA
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low-cost ROBOTIS-Mini can be equipped with a camera and
networked computer vision system. This paper demonstrates
the performance of our ultra low-cost augmented system with
grayscale, Aruco marker detection, and facial detection trials,
and compares the performance of our augmented ROBOTIS-
Mini with that of the ROBOTIS-OP2.

This paper is structured as follows: Section II will describe
the related work, focusing on low-cost humanoid platforms
and networked computer vision systems; Section III will
describe the platforms used for augmentation and experi-
mentation; Section IV will describe the method of vision
augmentation; Section V will explain the experimental meth-
ods used to evaluate the augmented system; Section VI will
showcase results of testing and evaluating the design; and
Section VII concludes and will present future work for the
project.

II. RELATED WORK

Implementations of popular computer vision algorithms on
scaled-down humanoids like ROBOTIS-OP and Aldebaran
NAO have already been demonstrated. For example, Bolot-
nikova et al. implemented a real-time face recognition system
on the NAO humanoid with built-in 1.22 MP camera [3].
They demonstrate the Viola-Jones face detection framework
and robust image processing. With block processing of local
binary patterns combined with a facial database, the system
was successful in real-world facial recognition experiments
involving subjects stationed between 1/2 and 2 meters from
the robot.

Figat et al. developed improved glyph detection for the
NAO’s vision system [4]. They demonstrated their improved
algorithm with detection of QR-codes and Aldebaran’s NAO-
marks. The authors found that QR-codes produced more
accurate distance-to-landmarks measurements than NAO-
marks. They report measurements from QR-codes had av-
erage relative error below 3%, whereas NAO-marks can
generate as high as 9% error.

Fenn, Mendes, and Budden optimized the nonfunctional
requirements of a miniature humanoid CV system and found
that the functional performance of the system was also
improved [5]. They developed an improved CV software
architecture and tested the system with both the Aldebaran
NAO and a Raspberry Pi with mock sensors and actua-
tors. Although they introduced increased overhead by using
wrappers and controllers instead of a simple pipeline, the
overall performance was improved by dynamic selection
of nodes. By focusing on modifiability, extensibility, and
portability, Fenn et al. developed an improved CV system
for miniature humanoids that is hardware independent and
easily implemented at low-cost.

These projects were strictly software augmentations. They
made use of the NAO robot’s two RGB cameras. However
the two cameras do not overlap, and therefore cannot be used
for traditional stereo vision applications. To address this,
Nefti-Meziani et al. developed a binocular vision system for
the NAO as a low-cost hardware and software augmentation

[6].

In the spirit of Nefti-Meziani et al’s work, this paper
presents hardware and software augmentation of an already
low-cost system such that more researchers, educators, and
students will have access to humanoid robotics platforms
with powerful CV capabilities. Existing CV implementations
on miniature humanoids have produced strong results, but the
platforms themselves, like the NAO and ROBOTIS-OP, are
still priced at approximately $10,000 per unit. Our system
can be reproduced at a price point of less than $1,000, an
order of magnitude less. Such a drastic reduction in price
will enable more research and educational organizations
to purchase the equipment and contribute to the robotics
community.

This paper uses latency as the primary metric for eval-
vating the performance of our augmented ROBOTIS-Mini,
henceforth referred to as Mini-CV. The Mini-CV system
processes image frames on a networked computer, and we
build on prior work involving the development and analysis
of networked systems. Of particular interest, Hill et al. devel-
oped a method for measuring the latency of IP surveillance
cameras over a network [7]. They present a method of
measuring total latencies of a variety of networked cameras,
utilizing ntp synchronization to measure the network laten-
cies. Most importantly, they identify and analyze all of the
latency components present in a networked camera system
and conclude that, while analog cameras do have lower
latencies, IP cameras are well within the tolerance for real-
time processing. In developing and testing this networked
system, we use latency analysis methods similar to Hill e?
al’s method for measuring the latency of networked video
surveillance systems.

III. HARDWARE

Miniature humanoid studies are a trending topic in the
robotics community. The appeal of miniature humanoids is
their low cost and high resistance to damage due to normal
tripping and toppling. Additionally, they are lightweight and
very mobile. Thus, miniature humanoids are attractive as
low-risk testbeds for the development of full-sized humanoid
applications, as well as for development of miniature-specific
applications. These miniature-specific applications might in-
volve service tasks in which small size is not a hindrance or
maintenance tasks in which small size is an advantage.

To test and evaluate the proposed system, we compare
the performance of our augmented system with that of a
significantly more expensive miniature humanoid from the
same manufacturer. The ROBOTIS-OP2 is already equipped
with CV capabilities and serves as the control.

A. ROBOTIS-OP2

ROBOTIS-OP2 (OP2) is the second in the OP series. Its
predecessor, commonly referred to as DARwIn-OP, has been
extensively cited in miniature humanoid research publica-
tions [8] [9] [10]. The OP2 is a high-cost bipedal miniature
humanoid weighting 2.9 kg and it is 0.454 m tall [11]. In
addition, this humanoid is equipped with 20 DoF, which
allows for a variety of movements that can be performed by
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TABLE I: ROBOTIS-OP2 vs ROBOTIS-Mini specifications.

Features ROBOTIS OP2 ROBOTIS-Mini
Price $10,000 $500
Built-in PC Intel Atom N2600 OpenCM 9.04
Gyroscope 3-Axis NONE
DoF 20 16
Accelerometer 3-Axis NONE
Camera 2MP HD USB NONE
(0N Linux Ubuntu 10.10 Embedded RTOS
Language C++/Java Embedded C (OpenCM)

the robot. OP2’s high mobility and advanced computational
power make for a compelling research and development
platform with a $10,000 price tag. Table I compares these
specifications with those of the much more modestly priced
ROBOTIS-Mini. Priced at only $500, the ROBOTIS-Mini
lacks some important capabilities relative to the OP2, such as
gyroscope, accelerometer, and camera. However, this paper
demonstrates the possibility of augmenting these capabilities
with low-cost components. Institutions that may not be able
to afford an OP2 or similarly-priced robot can augment ultra
low-cost platforms like the ROBOTIS-Mini to achieve the
same capabilities with a far smaller budget.

B. ROBOTIS-Mini

The ROBOTIS-Mini is a low-cost miniature humanoid
robot developed by ROBOTIS, the makers of ROBOTIS-
OP2 and other miniature humanoid robot platforms. The
Mini has a significantly smaller form-factor than the OP2,
measuring just 26 cm tall with an arm-span of 36 cm.
The Mini was developed to support education on humanoid
robotics, particularly for K-12 schools. The Mini can be
controlled using a smartphone app, the R+ Motion software
developed by ROBOTIS, or by directly programming the
OpenCM9.04 microcontroller with an Arduino-style pro-
gramming language. These features, along with its low price,
make the Mini a great choice for K-12 educators that want
to introduce students to humanoid robotics. However, the
absence of any computer vision capabilities leaves a large
gap in the educational and research value of the ROBOTIS-
Mini.

IV. DESIGN APPROACH AND IMPLEMENTATION

>
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Fig. 2: New Mini-CV head (Left) and original ROBOTIS-
Mini head (Right)
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Fig. 3: Exploded view of Mini-CV head
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In order to augment the vision capabilities of the
ROBOTIS-Mini, a low-cost solution must be developed in
order to keep the total cost of the augmented platform,
nicknamed Mini-CV, as low as possible. To accomplish this,
a networked approach for computer vision was adopted in
this design. This allows the camera data to be acquired and
encoded locally on the Mini-CV, and then streamed to a
server for computer vision processing.

A popular solution for networked cameras is utilizing a
Raspberry Pi camera to stream data to a local server or host
on a web interface. For the Mini-CV, a Raspberry Pi Zero W
was used with the Raspberry Pi camera to provide a low-cost,
low-power solution for capturing visual data. The Raspberry
Pi Zero W costs $10, the Raspberry Pi camera costs $20, and
cabling for the system costs an additional $10 — bringing the
total costs to $40 for the Mini-CV augmentation. To house
these components, a lightweight head was designed and 3D
printed, as seen in Fig. 2. The exploded view of the Mini-
CV head design can be seen in Fig. 3, showing the inner
and outer shells, and the electronic components for the 3D
design.

The Mini-CV utilizes a networked approach to stream
local camera data from the Raspberry Pi to a more pow-
erful computer for vision processing. This takes a large
computational load away from the Mini-CV, allowing more
complex computer vision algorithms to be developed and
used with the Mini-CV. To achieve the network stream, the
ffmpeg package is used to capture individual frames from
the Raspberry Pi camera and then host them on a local
web page. This web interface also allows editing of the
camera’s settings in real-time. After each frame is sent to
the web page, the processing computer captures the frame
from the web page. This process is achieved by using
the http protocol to grab the most recent frame from the
web page. This essentially creates a live stream from the
Mini-CV to the processing computer. However, due to the
method of acquiring frames using http, the network delay is
significantly reduced compared to traditional live-streaming

Strac.ffmpeg.org/wiki/StreamingGuide, ffmpeg streaming
Twww.w3.org/Protocols/rfc2616/rfc2616.html, http protocol

566



methods. Once this stream is established on the processing
computer, it can be used in the same manner as a local
camera for vision processing. This allows for utilization
of popular computer vision libraries such as OpenCV for
processing with the Mini-CV. The architecture of the Mini-
CV system is illustrated in Fig. 4.

opency [ | Dutru
A
http Processing Computer

< ffmpeg
server

Live frame

Web interface [

Camera
Frame

Raspberry Pi Zero W Encoding <

Fig. 4: Mini-CV architecture

V. EXPERIMENTAL APPROACH AND SETUP

To evaluate the performance of Mini-CV, the latencies in
the vision system are measured. There are many points in
the network pipeline between receiving an image with the
camera, and displaying the output of the vision processing.
The full pipeline can be seen in Fig. 5. In order to test the
full latency of the system, the latency within each computer
vision algorithm also needs to be tested. This allows compar-
ison of the true latency of the system with respect to other
miniature humanoid computer vision systems, such as that
of the ROBOTIS-OP2.

Due to the nature of the Mini-CV system’s ffmpeg ap-
proach combined with the http transfer protocol, ntp syn-
chronization is not the best-suited technique for measuring
latency, and we must deviate slightly from the method of
testing network latency described by Hill ef al. [7]. To test
the latency of the system, we use a method that involves the
recording of an on screen timer. The timer, with accuracy
to nearest millisecond, is displayed on the screen of the
processing computer, along with the OpenCV output of the
tested algorithm. The timer on-screen is recorded by the
Mini-CV. While the timer and vision processing algorithm
are running, a separate camera is used to record the two timer
windows displayed on screen: one displaying the live timer,
and one displaying the delayed timer. The difference between
the delayed timer and the live timer gives the total latency
of the pipeline, with mean value L7,:,;. Fig. 6 contains

Camera
Frame

v

Camera Latency

v

Network Latency

v

Algorithm Latency

v

Display Latency

v

Output
Frame

Fig. 5: Mini-CV latency pipeline

screen shots showing the simultaneous display of the live
and processed on-screen timers.

The performance of the Mini-CV was compared to a
non-networked approach for miniature humanoid computer
vision, the ROBOTIS-OP2. The method for evaluating the
OP2 was the same as the Mini, with the exception that
the processing computer is onboard the OP2 itself, and the
display is drawn directly from the OP2 using an HDMI
connection. For experiments, both systems were situated so
that the cameras’ FOVs were centered upon the display,
and the display was completely in view. The setup for
experimentation can be seen in Fig. 7.

The hardware for the processing computer and wireless
router for the Mini-CV are interchangeable. However, for this
implementation an ASUS RT-AC1200 router, a consumer-
grade high-speed router, was used. The processing computer
used is an MSI GL62M 7REX-1067, with a dedicated Nvidia
1050Ti GPU. This hardware was chosen for its consumer,
mid-range performance to get the most accurate representa-
tion of performance for the average user.

The Mini-CV was tested at three different input resolu-
tions: 1920x1080, 1280x720, and 640x480. Due to software
limiting of the OP2 to a maximum input resolution of
800x600, the OP2 was only tested at 640x480. For each
resolution three computer vision algorithms were tested: AR

8opencv.org, OpenCV (Open Source Computer Vision Library)
9www.uco.es/investiga/grupos/ava/node/26, ArUco Library
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Fig. 6: Screen shot of experimental setup for Mini-CV

(b) ROBOTIS-OP2

(a) Mini-CV

Fig. 7: Physical layout of experimental setup for Mini-CV
and ROBOTIS-OP2

marker detection, Viola-Jones face detection, and grayscale
conversion as a baseline test. For each algorithm, four trials
were performed, and all trials were averaged.

To determine the average network latency, Lyeswork for
the Mini-CV implementation, timing trials were performed
with the grayscale algorithm. For each frame coming in, the
time was recorded at the beginning of the processing loop,

and again at the end of the processing loop for that frame.
Taking the difference of these two times gives the algorithm
latency, L Aigorithm- Four trials were performed, at 640x480,
and the results were averaged to determine L Ajgorithm Of the
grayscale algorithm. This average value was subtracted from
the Lrpyq; of the grayscale trials at 640x480, along with
the known camera latency (frame rate) Lo gmerq and display
latency (refresh rate) Lpispiay to determine the average
network latency of the Mini-CV system. The equation below
represents the average latency of the network, where all
latencies are averages.

LNetwork = LTotal_LCame'r'a_LDisplay_LAlgorithm (1)

VI. RESULTS

The results of the experiments described in Section V are
shown for ROBOTIS-OP2 and Mini-CV in Tables II and III
respectively. As these tables demonstrate, the Mini-CV sig-
nificantly outperformed the ROBOTIS-OP2, with the excep-
tion of face detection. In the case of face detection, process-
ing of each frame is more computationally expensive than a
simple grayscale algorithm or Aruco marker detection. This
first iteration of the Mini-CV included buffering of frames in
order to minimize information loss. The ROBOTIS-OP2 does
not buffer frames. Mini-CV’s buffering was effective for the
less computationally expensive algorithms, but it introduced
significant lag with Viola-Jones face detection. To improve
the performance of Mini-CV for face detection, the buffering
could be reduced, or eliminated completely as is the case for
ROBOTIS-OP2. The trade-off is frame loss, and the final
design should be informed by the specific application in
mind. This paper presents a general purpose platform that
can be tailored accordingly.

TABLE II: ROBOTIS-OP?2 trials.

Resolution | Algorithm | Run1 | Run2 | Run 3 | Run 4
[sec] [sec] [sec] [sec]

Aruco 1.6 1.5 1.5 1.5

640x480 Gray 0.35 0.35 0.37 0.35

Face 5.8 59 5.8 5.7

TABLE II: Mini-CV trials.

Resolution | Algorithm | Run1 | Run2 | Run3 | Run 4
[ms] [ms] [ms] [ms]

Aruco 0.3 0.29 0.29 0.32

1920x1080 Gray 0.34 0.29 0.28 0.34
Face 12.71 12.5 4.42 11.5

Aruco 0.21 0.25 0.23 0.21

1280x720 Gray 0.2 0.23 0.17 0.17

Face 9.4 8.3 7.5 8

Aruco 0.25 0.25 0.23 0.25

640x480 Gray 0.23 0.23 0.23 0.22

Face 9.6 10.5 9.4 9.6
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The improved performance of the Mini-CV system over
ROBOTIS-OP2 can be attributed to the optimizations made
in the Mini-CV’s system with regard to capture, specifically
the use of the ffmpeg method and the http transfer protocol.
The ffmpeg method for encoding includes crowd-sourced
optimizations for real-time encoding of video, as does the
on-chip encoding for the Raspberry Pi camera. Furthermore,
while one would expect a local transfer protocol such as the
one used in OP2’s system (PTP) to be faster than a network
protocol, this is often untrue when unoptimized methods
are used. The http capture method utilized in the Mini-CV
system utilizes an efficient transfer of data from the Mini-
CV’s web server to the processing computer, ensuring lower
network latencies than the OP2.

The results of the algorithm latency tests described in
Section V are shown in Table IV. Using this data, the
network latency of the Mini-CV can be determined according
to Equation 1. The minimum, maximum, and mean values
of each latency component are tabulated for the baseline test
(grayscale, 640x480) in Tables V and VI for the Mini-CV
and ROBOTIS-OP2 respectively.

TABLE IV: Grayscale algorithm latencies (640x480).

Run1l | Run2 | Run3 | Run4 | Average
ms ms ms ms ms
49.26 | 33.86 | 3559 | 3548 38.55

TABLE V: Mini-CV Experimental latencies.

Latency Components Min Mean | Max
[ms] | [ms] | [ms]
Camera 40 40 40
Display 17 17 17
Algorithm 34 39 49
Network 114 131 139
Total 220 227 230

TABLE VI: OP2 Experimental latencies.

Latency Components Min | Mean | Max

[ms] [ms] [ms]
Camera 40 40 40
Display 17 17 17
Algorithm 34 39 49
Network 244 259 279

Total 350 355 370

As seen in Tables V and VI, the latency of the network
for the Mini-CV averages 131 ms, while the latency for
the local network of the OP2 averages 259 ms. This shows
that the Mini-CV has a significant performance increase over
the ROBOTIS-OP2, with over 50% less latency in the Mini-
CV system. These results show great promise for the Mini-
CV system, as these latencies are very low for live-video
streaming conditions and show significant improvement over
the OP2 system.

VII. CONCLUSION AND FUTURE WORK

This paper presented the development and testing of an
ultra low-cost computer vision augmentation of a miniature
humanoid. The results of latency trials demonstrate the via-
bility of the augmented system, Mini-CV, as an educational
and research platform with computer vision capabilities. By
networking Mini-CV with an off-board computer for image
processing, the on-board processor is freed up for more vital
tasks related to motion and balance. This paper demonstrates
how the capabilities of low-cost miniature humanoids can be
inexpensively augmented in order to make advanced robotics
education and research more widely accessible.

Future work will involve the development of other hard-
ware and software modules for Mini-CV that increase its
appeal as a research platform. Future projects will involve:
integrating full-body motion planning and complex walking
algorithms; improving software architecture; adding sensors
like gyroscope, accelerometer, and RGB-D camera; and
implementing more advanced computer vision applications
such as object recognition and Visual SLAM. Furthermore,
with the ability to use off-board computers for vision-based
processing, the authors hope to incorporate machine learning
algorithms related to computer vision and humanoid robotics
into Mini-CV’s architecture.

REFERENCES
[1] “Thirteen Advanced Humanoid Robots for Sale Today,”
Smashing  Robotics, April 16, 2016. [Online]. Available:

https://www.smashingrobotics.com/thirteen-advanced-humanoid-
robots-for-sale-today/. [Accessed: November 27, 2017].

[2] C. N. Thai, "ROBOTIS-MINI System,” In Exploring Robotics with
ROBOTIS Systems, pp. 157-172, 2015.

[3] A. Bolotnikova, H. Demirel and G. Anbarjafari, “Real-time ensemble
based face recognition system for NAO humanoids using local binary
pattern,” Analog Integrated Circuits and Signal Processing, pp.467-
475, 2017.

[4] J. Figat, and W. Kasprzak, "NAO-mark vs QR-code Recognition by
NAO Robot Vision,” Automation, Robotics and Measuring Techniques,
pp. 55-64, 2015.

[5] S. Fenn, A. Mendes and D. M. Budden, “Addressing the non-
functional requirements of computer vision systems: a case study,”
In Machine Vision and Applications, pp. 77-86, 2016.

[6] S. Nefti-Meziani, U. Manzoor, S. Davis and S. K. Pupala, ”3D
perception from binocular vision for a low cost humanoid robot NAO,”
Robotics and autonomous systems, pp.129-139, 2015.

[7]1 R. Hill, C. Madden, A.v.d Hegel, H. Detmold, and A. Dick, "Mea-
suring Latency for Video Surveillance Systems,” In IEEE Conference
on Digital Image Computing: Techniques and Applications, pp. 8995,
Melbourne, Australia, 2009.

[8] M. Gomez, B. Khaday, A. Gonzalez, A. Esmaeili and E. T. Matson,
”Golf-Playing DARwIn-OP: A Theoretical Approach,” In Robot Intel-
ligence Technology and Applications 4, pp. 411-421, 2017.

[9] J. C. Vaz, H. Lee, Y. Jun and P. Oh, "Towards tasking humanoids for
lift-and-carry non-rigid material,” In Ubiquitous Robots and Ambient
Intelligence (URAI), pp. 316-321, Jeju, South Korea, May, 2017.

[10] C. Teixeira, L. Costa and C. Santos, “Biped locomotion-improvement
and adaptation,” In Autonomous Robot Systems and Competitions
(ICARSC), pp. 110-115, Espinho, Portugal, May, 2014.

[11] 1. Ha, Y. Tamura, H. Asama, J. Han and D. W. Hong, ”Development of
Open Humanoid Platform DARwIn-OP,” In SICE Annual Conference,
pp- 3190-3195, Tokyo, Japan, Sep, 2011.

[12] S. Nefti-Meziani, U. Manzoor, S. Davis and S. K. Pupala, “Devel-
opment of Open Humanoid Platform DARwIn-OP,” In Robotics and
autonomous systems, pp. 129-139, 2015.

[13] L. George and A. Mazel, "Humanoid robot indoor navigation based
on 2D bar codes: Application to the NAO robot,” In Humanoid Robots
(Humanoids), pp. 329-335, Atlanta, United States, October, 2013.

569



