OpenCYV Tutorial 6 - Chapter 7

Author: Noah Kuntz (2009)
Contact: nk752@drexel.edu

Keywords: OpenCV, computer vision, image processing, histograms

My Vision Tutorials Index

This tutorial assumes the reader:

(1) Has a basic knowledge of Visual C++

(2) Has some familiarity with computer vision concepts
(3) Has read the previous tutorials in this series

The rest of the tutorial is presented as follows:
e Step 1: Histograms and Back Projection

* Step 2: Template Matching
* Final Words

Important Note!

More information on the topics of these tutorials can be found in this book: Learning OpenCV:

Step 1: Histograms and Back Projection

Computer Vision with the OpenCV Library

W1 Saurce . [ESTESRE) i —

= sty

Original Image, Back Projection, and Histogram

Histograms are one of the classic methods to analyze images. A Histogram classifies aspects of an image into bins to determine the correlation between

images, or a feature in an image. OpenCV provides the CvHistogram structure, created with cvCreateHist(int dims, int* sizes, int type, float** ranges =
NULL, int uniform = 1) Consult the book for more details of the histogram data structure. Histograms bins are accessed in a similiar way to normal matrices,
for example with cvGetHistValue 2D(CvHistogram* hist, int idx0, idx1). The following example computes a histogram for the intensity of an image based on
the HSV colorspace. The histogram is also normalized, and cvCalcBackProject is used to map the histogram results back on to the image to better illustrate

the results. Here is the code:

int _tmain(int argc, _TCHAR* argv([])
{
// Set up images
IplImage* img = cvLoadImage ("MGC.jpg");

IplImage* back_img = cvCreateImage(cvGetSize(img),

// Compute HSV image and separate into colors

IPL_DEPTH_8U,

IplImage* hsv = cvCreatelmage(cvGetSize(img), IPL_DEPTH_8U,

cvCvtColor (img, hsv, CV_BGR2HSV);

IplImage* h_plane = cvCreatelmage(cvGetSize(img),
IplImage* s_plane = cvCreatelImage(cvGetSize(img),
IplIimage* v_plane = cvCreatelImage(cvGetSize(img),

IplImage* planes[] = { h_plane, s_plane };
cvCvtPixToPlane(hsv, h_plane, s_plane, v_plane,

// Build and fill the histogram
int h_bins = 30, s_bins = 32;
CvHistogram* hist;

{

int hist_size[] = { h_bins, s_bins };
float h_ranges[] = { 0, 180 };
float s_ranges[] = { 0, 255 };

float* ranges[] = { h_ranges, s_ranges };

0

)i

8,
8,
8,

1)
1)
1)

;
;

3

)i

hist = cvCreateHist(2, hist_size, CV_HIST ARRAY, ranges, 1);
}
cvCalcHist (planes, hist, 0, 0); // Compute histogram
cvNormalizeHist (hist, 20*255); // Normalize it

cvCalcBackProject (planes, back img, hist);// Calculate back projection
cvNormalizeHist (hist, 1.0); // Normalize it

// Create an image to visualize the histogram

int scale = 10;

IplImage* hist_img = cvCreateImage(cvSize(h_bins * scale, s_bins * scale), 8, 3);
cvZero (hist_img);

// populate the visualization
float max_value = 0;
cvGetMinMaxHistValue (hist, 0, &max value, 0, 0);

for(int h = 0; h < h_bins; h++){
for(int s = 0; s < s_bins; s++){
float bin_val = cvQueryHistValue 2D(hist, h, s);
int intensity = cvRound(bin_val * 255 / max _value);
cvRectangle(hist_img, cvPoint(h*scale, s*scale),

cvPoint ((h+1l) *scale - 1, (s+l)*scale - 1)
CV_RGB(intensity, intensity, intensity),
CV_FILLED);

}

// Show original
cvNamedWindow ("Source", 1) ;
cvShowImage ("Source", img);

// Show back projection
cvNamedWindow ("Back Projection™, 1) ;
cvShowImage ("Back Projection", back img);

// Show histogram equalized
cvNamedWindow ("H-S Histogram", 1) ;
cvShowImage ("H-S Histogram", hist_img);
cviWaitKey (0) ;

cvReleaseImage (&img);

cvReleaseImage (&back _img);

cvReleaseImage (&hist_img);

return 0;

Step 2: Template Matching
B Template . =]

n =i B SQDIFF_NORMED

Another powerful operation with a histogram is template matching. Here a template image is compared with a larger image to find the area most similiar to
the template in the larger image. The function cvMatchTemplate(const CvArr* image, const CvArr* templ, CvArr* result, int method) is used to do the
matching. The last input here chooses the method of template matching. We use all six methods, starting with square difference matching, which simply takes
the squared difference between the template and image. A match is 0 and bad matches are large values. Then there is correlation matching which multiplies
the template against the image, so a large value is a good match and a very bad match s 0. The last general type of matchin is correlation coefficient matching,
which matches the mean of the image relative to the mean of template, with a good match being 1, no match being 0, and a mismatch being as low as -1. The
normalized versions of these are also tested, and generally provide more visually clear results. Here is the code:

int _tmain(int argc, _TCHAR* argv[])

{
IplImage *src, *templ, *ftmp[6]; // ftmp will hold results
int 1i;

// Read in the source image to be searched
src = cvLoadImage ("MGC.Jjpg");

// Read in the template to be used for matching:
templ = cvLoadImage ("template.jpg");

// Allocate Output Images:
int iwidth = src->width - templ->width + 1;
int iheight = src->height - templ->height + 1;
for(i = 0; 1 < 6; ++1){
ftmp[i]= cvCreatelmage(cvSize(iwidth, iheight), 32, 1);
}

// Do the matching of the template with the image
for(i = 0; 1 < 6; ++1i){
cvMatchTemplate (src, templ, ftmp[i], 1);
cvNormalize (ftmp[i], ftmp[i], 1, 0, CV_MINMAX);
}

// DISPLAY

cvNamedWindow ("Template™, 0);
cvShowImage ("Template", templ);
cvNamedWindow ("Image", 0);
cvShowImage ("Image", src);
cvNamedWindow ("SQDIFF", 0);
cvShowImage ("SQDIFF", ftmp[0]);
cvNamedWindow ("SQDIFF_NORMED", 0);
cvShowImage ("SQDIFF_NORMED", ftmp[l]);
cvNamedWindow ("CCORR", 0);
cvShowImage ("CCORR", ftmp[2]);
cvNamedWindow ("CCORR_NORMED", 0);
cvShowImage ("CCORR_NORMED", ftmp[3]);
cvNamedWindow ("COEFEF", 0);
cvShowImage ("COEFF", ftmp[4]);
cvNamedWindow ("COEFF_NORMED", 0);
cvShowImage ("COEFF_NORMED", ftmp[5]);

cviWaitKey (0) ;

return 0;

Final Words

This tutorial's objective was to show how to use some basic histogram functions.

Click here to email me.
Click here to return to my Tutorials page.

