OpenCYV Tutorial 10 - Chapter 11

Author: Noah Kuntz (2009)
Contact: nk752@drexel.edu

Keywords: OpenCV, computer vision, calibration, camera parameters

My Vision Tutorials Index

This tutorial assumes the reader:

(1) Has a basic knowledge of Visual C++

(2) Has some familiarity with computer vision concepts
(3) Has read the previous tutorials in this series

The rest of the tutorial is presented as follows:

* Step 1: Camera Calibration
* Final Words

Important Note!

More information on the topics of these tutorials can be found in this book: Learning OpenCV: Computer Vision with the OpenCV
Library

Step 1: Camera Calibration

Calibration

-
] Calibration

Image Undistortion After Calibration

Camera calibration is important for any image processing to be a highly accurate representation of the real world. The basics of
perspective geometry are covered in the book. The concern of this tutorial is simply how to extract the relevant camera parameters from
a sequence of images. For this example you will need to print out this image as a full page:

Example Checkerboard

This code uses cvFindChessboardCorners to find the corners, and then draw them on the current image with
cvDrawChessboardCorners. If all the corners are successfully identified, the corners are added to image points and object points for
later use in calibration. After all the different orientations are successfully stored (orientations are arbitrary but should have a variety of
views to solve for the camera parameters), then cvCalibrateCamera?2 is used to get the camera parameters. Lastly, cvinitUndistoryMap is
used with cvRemap to unwarp the camera images. So for the user, simply print out the checkerboard, then point the camera at it in
various orientations as the program marks the points in each one (it is successful if a variety of colors are used, all red or nothing is a
failure). The intrinsics of the camera and the distortion are stored in xml files to use in other programs. Here is the code:

int n_boards = 0;

const int board dt = 20;
int board w;

int board h;

int _tmain(int argc, _TCHAR* argv[])
{

board w = 5; // Board width in squares
board_h = 8; // Board height
n_boards = 8; // Number of boards

int board n = board w * board h;

CvSize board sz = cvSize(board w, board h);
CvCapture* capture = cvCreateCameraCapture(0);
assert (capture);

cvNamedWindow ("Calibration");
// BAllocate Sotrage
CvMat* image_points

cvCreateMat (n_boards*board n, 2, CV_32FC1);

CvMat* object points = cvCreateMat (n_boards*board n, 3, CV_32FCl);
CvMat* point counts = cvCreateMat (n boards, 1, CV 32SCl);
CvMat* intrinsic matrix = cvCreateMat (3, 3, CV_32FC1l);

CvMat* distortion coeffs cvCreateMat (5, 1, CV_32FC1);

CvPoint2D32f* corners = new CvPoint2D32f[board n];
int corner count;

int successes = 0;

int step, frame = 0;

IplImage *image = cvQueryFrame (capture);

IplImage *gray image = cvCreatelmage(cvGetSize(image), 8, 1);

// Capture Corner views loop until we've got n boards

// succesful captures (all corners on the board are found)

while(successes < n boards) {
// Skp every board dt frames to allow user to move chessboard
if (frame++ % board dt == 0){
// Find chessboard corners:
int found = cvFindChessboardCorners(image, board sz, corners,
&corner count, CV_CALIB CB ADAPTIVE THRESH | CV_CALIB CB _FILTER QUADS);

// Get subpixel accuracy on those corners
cvCvtColor (image, gray image, CV_BGR2GRAY);
cvFindCornerSubPix (gray image, corners, corner count, cvSize(11, 11),
cvS8ize(-1, -1), cvTlermCriteria(CV_TERMCRIT EPS+CV_ TERMCRIT ITER, 30, 0.1));

// Draw it
cvDrawChessboardCorners (image, board sz, corners, corner count, found);
cvShowImage ("Calibration", image);

// 1f we got a good board, add it to our data
if (corner count == board n) {
step = successes*board n;
for (int i=step, j=0; j < board n; ++i, ++j){
CV_MAT ELEM(*image points, float, i, 0
CV_MAT_ELEM(*image_points, float, i, 1

corners[j].x;
= corners[j].y;

(
CV_MAT ELEM(*object points, float, i, 0) = j/board w;
CV_MAT ELEM(*object points, float, i, 1) = j%board w;
CV_MAT_ELEM(*object points, float, i, 2) = 0.0f;
}
CV_MAT_ELEM(*point_counts, int, successes, 0) = board n;

successes++;

}

// Handle pause/unpause and ESC
int ¢ = cvWaitKey(15);

if(c=="p"){
c = 0;
while(c != 'p' && c != 27){
c = cvWaitKey(250);
}
}
if(c == 27)
return 0;
image = cvQueryFrame (capture); // Get next image

} // End collection while loop

// Allocate matrices according to how many chessboards found
CvMat* object points2 = cvCreateMat(successes*board n, 3, CV_32FC1l);
CvMat* image points2 = cvCreateMat (successes*board n, 2, CV 32FC1l);
CvMat* point_counts2 = cvCreateMat (successes, 1, CV_32SCl);

// Transfer the points into the correct size matrices
for(int i = 0; i < successes*board n; ++i){
CV_MAT ELEM(*image points2, float, i, 0)

CV_MAT ELEM(*image points, float, i, 0
1

()
CV_MAT_ELEM(*image points2, float, i, 1) = CV_MAT ELEM(*image points, float, i,)
CV_MAT ELEM(*object points2, float, i, 0) = CV_MAT ELEM(*object points, float, i, 0);
CV_MAT_ELEM(*object_points2, float, i, 1) = CV_MAT ELEM(*object_points, float, i, 1);
CV_MAT ELEM(*object points2, float, i, 2) = CV_MAT ELEM(*object points, float, i, 2);

for(int i=0; i < successes; ++i){
CV_MAT ELEM(*point counts2, int, i, 0) = CV_MAT ELEM(*point counts, int, i, 0);
}
cvReleaseMat (&object points);
cvReleaseMat (&image_points);
cvReleaseMat (&point_counts);

// At this point we have all the chessboard corners we need
// Initiliazie the intrinsic matrix such that the two focal lengths
// have a ratio of 1.0

CV_MAT ELEM(*intrinsic matrix, float, 0, 0
CV_MAT_ELEM(*intrinsic_matrix, float, 1, 1

o o

y =
) =

// Calibrate the camera
cvCalibrateCamera2 (object points2, image points2, point counts2, cvGetSize(image),
intrinsic matrix, distortion coeffs, NULL, NULL, CV CALIB FIX ASPECT RATIO);

// Save the intrinsics and distortions
cvSave ("Intrinsics.xml", intrinsic matrix);

cvSave ("Distortion.xml", distortion coeffs);

// Example of loading these matrices back in

CvMat *intrinsic =
CvMat *distortion =

(CvMat*) cvLoad (
(CvMat*) cvLoad (

"Intrinsics.xml");
"Distortion.xml");

// Build the undistort map that we will use for all subsequent frames

IplImage* mapx =
IplImage* mapy =
cvInitUndistortMap(intrinsic,

// Run the camera to the screen,

cvCreateImage (cvGetSize(image),
cvCreateImage (cvGetSize(image),
distortion,

IPL DEPTH 32F, 1);
IPL_DEPTH 32F, 1);

mapx, mapy);

now showing the raw and undistorted image

cvNamedWindow ("Undistort"™);

while (image) {
IplImage *t = cvCloneImage(image);
cvShowImage ("Calibration", image); // Show raw image
cvRemap (t, image, mapx, mapy); // undistort image

cvReleaseImage (&t);
cvShowImage (

"Undistort",

image); // Show corrected image

// Handle pause/unpause and esc

int ¢ = cvWaitKey(15);
if(c == "p'){
c = 0;
while(¢ != "'p'
c =
}
}
if(c ==27)
break;
image = cvQueryFrame (

}

return 0;

&& C
cviWaitKey (250);

=27){

capture);

Final Words

This tutorial's objective was to show how to extract camera parameters using calibration routines.

Click here to email me.
Click here to return to my Tutorials page.

