
 Tutorial of OptiTrack Arena Motion Capture System
 2nd : Implementation of System

Motivation of this tutorial is to make readers understand how to use Motion Capture System
using Arena software and how to stream data using NATNET SDK will be presented in a next
tutorial.

1. Calibration

This section show how to calibrate a Motion Capture System. This process is necessary only
when you changed position of Cameras or you want to change coordinate of capture volume.
Therefore, if your purpose of reading this tutorial is to want to capture some targets using
Arena motion capture system, you do not need to read this section.

 Step 1) Blocking Bad Segments

If there are unnecessary bright colored or blinking objects in capture area, these objects can
generate many noise in Arena motion capture system. Easiest way to eliminate them might be
removing them by yourself from capture area. However, in case of reflective dots on floor, we
can not remove from capture area. This section is for those cases.

1st, go toolbar which is located in top of window, then, select Wizards tab. Click Calibration.

Click Next and choose Full calibration, 3 Marker Ward and 500mm(if you use long one)

 Now you can see window below and block visible markers by clicking Block All Visible
Points button on right of window. At this time, there should be not markers which you want to
capture in capture area. If you block those markers, you can not capture them and system will
not work as you want.

You can also block individual points by manually clicking and dragging those areas. If you
right click each small window, you can see many options.

Step 2) Wanding and Solving

Click Next and Start Wanding. Stand middle in capture area and sway your ward. You can see
how ward are captured by each camera like below.

Move around capture area and sway ward all through the capture area with normal speed.

Try to make green line cover as many area as possible in all 18 camera windows.

After some time, wanding process will be finished automatically. Then click next and let
solving calculation works. After calculation, check all cameras have at least Excellent status. If
not repeat calibration process again. Do not forget save your calibration points data in your
computer.

After finishing successful calibration, you can see graphical calibration result in window.

Step 3) Setting the Ground Plane

This process make us choose coordinate in capture area. Picture below shows a device which is
used for setting ground coordinate.

Place this plate on origin point in capture area. If you are continuing from wanding and solving
process in previous section, you just follow process which window provide to reach this
Ground Plate process. If you are not doing this process continuously from last section, you should start
arena first. Then you should initially include previous calibration result (by wanding and solving). Easy way to
include data is click Open Data in File toolbar. If you select your previous calibration points data, you can
import previous wanding and solving information in current window.

Next, select calibration in Wizard toolbar. Then, select Set Ground Plate Only in calibration type. After then,
you should block visible markers (At this time, there should not be ground plate in capture area). If you click
next, you can reach Ground Plate process. Now, let ground plate be positioned in origin point in capture area.

If you followed above steps successfully, you can see 3 markers of Ground Plate in Ground
Plate window.

Click and drag 3 points, then click Set ground plate button on right toolbar. Of course, you
should check all typed information are correct for your configuration. Follow window indicates
and saves calibration result in your computer. Whenever you capture some targets in Arena
Motion Capture System, you need to define coordinate of capture volume. You can define axis
just importing this calibration result data. Easy way to use previous data is clicking Open Data
in file toolbar.

2. Attaching Markers in Human Body

This Process is necessary only when you capture a human body. If your goal is to capture a
robot(non humanoids) or other kinds of objects, please refer Section 5. Rigid Body Wizards.

1) Foot : 2 markers per each foot

2) Lower Leg: 3 markers per each leg. Middle marker should be asymmetrically positioned
between 2 legs.

3) Upper Leg : One per each upper leg. Asymmetrically positioned between 2 legs.

4) Hip : 4 markers. 1 for Front, 2 for Side and 1 for Back. In case of a marker in back position
can be attached to either left or right position from center. If you want to track 2 people in
Capture system, each person should have different position. Left for 1 person and right for
another one.

5) Back : 3 markers for back.

6) Arm : 3 per each arm. Do not make 2 side of triangle have same length. If middle point is
closer to top point in left arm, try to make middle point closer to bottom point in right arm.

7) Hand: 1 rigid body which has 3 markers per each hand

8) Head : 3 Markers. 2For Side and 1 for Front. Front marker should left side of cap.

For more details, please watch tutorial in Arena web-page (
http://www.naturalpoint.com/optitrack/products/arena/tutorials.html).

3. The Skeleton Wizards

This Process is necessary only when you capture a human body. If your goal is to capture a
robot(non humanoids) or other kinds of objects, please refer Section 5. Rigid Body Wizards.

Step1) Select Skeleton wizard in Calibration toolbar in top of window.

http://www.naturalpoint.com/optitrack/products/arena/tutorials.html

Step 2) Select Default Skeleton of 34 markers (If you want to use Skeleton of 38 markers, you
should attach 2 more markers to each foot. 1 for front, another for back).

Step 3) Select skip instruction if you do not want to see. Then, click Next.

Step 4) Select a Proceed with New T-pose.

4. T-Pose and Skeleton Calibration

This Process is necessary only when you capture a human body. If your goal is to capture a
robot(non humanoids) or other kinds of objects, please refer Section 5. Rigid Body Wizards.

Step 1) Make one person stand in capture are and make T-Pose

Step 2) Push Play Button and Record Button

Initially, this will make MOCAP system record a person in capture area for 20 seconds.

Step 3) Make a person inside capture area make a basic movement. After 20 seconds, recording
will be finished. Click Next.

Step 4) Push Play Button and Stop when T-pose look good

Step 5) Type height and shoulder width

Step 6) Select Fit-Tpose

Step 7) Select Next

Step 8) Click Auto-Assign and save Skeleton file

5. Rigid Body Wizards

This Process is necessary only when you capture a robot(non humanoids) or other kinds of
objects. If your goal is to capture a human body, please refer Section 3 and 4.

Step 1) Select Rigid Body toolbar in Calibration toolbar

Step 2) Click Next

Step 3) Create New Rigid Body and Click Next

Step 4) Attach 3 markers on target objects(such as mobile robot) to be tracked. 3 markers will
be captured as one rigid body. In Mocap system, we can get position and rotation data of each
rigid body. If your object consists of several rigid body, you should attach 3 markers per each
rigid body. For example, if your target is mobile robot which consists of 3 rigid body, you need
totally 9 markers. Each set of 3 markers should be close enough and form triangle. Do not
forget that triangle of each rigid body should have different shape. If not, system will be
confused to distinguish rigid bodies. You also can use 4 markers to define one rigid body if you
have enough number of spare markers

Step 5) Push Play button to activate cameras

Step 6) Push Record Button

Step 7) After finishing recording of movement (or experiment), Push record button again to
finish recording.

Step 8) Play back to start time of recorded file. Then, click and drag markers to define a rigid
body. If your target consists of 3 rigid bodies, you can define one rigid body first in this step.
You should repeat this section to define remaining rigid bodies. In sum, you should click and
drag markers which are of one rigid body only in this step. You should not click and drag other
markers which define other rigid bodies. You can do deal with them by repeating this section.

Step 9) Type name of this rigid body

Step 10) Click Create button

Step 11) Click Next

Step 12) In this step, you can select origin point. Click one marker which you want to set as
origin and click Set Origin button

Step 13) Click Next

Step 14) You can decide shape of rigid body

Step 15) Push Next button

Step 16) If you playback to start time, you can see markers are handled as one rigid body in
recorded file.

Step 17) Save rigid body file

6. Capture and Trajectorizing

Step 1) Go to Capture session in bottom of window

Step 2) Push Play button to activate cameras

Step 3) Type Begin time and recording time

Step 4) Then, push record button. Let people or objects make a movement to be recorded in
capture area.

Step 5) Click Record button again to finish recording. Or recording will be terminated
automatically after recording time. Save Take file (2D Point data).

Step 6) To export this data, you need to trajectorize this Take file (2D Data). Goto left toolbar
and right click Take file (2D Data) which you want to convert. Then select Trajectorize.

Step 7) Input necessary data and click OK

Step 8) Now you have new Take (trajectory) file of this Take (2D Data) file. Right click the
new Take (Trajectory) file and click Set Current.

Step 9) Now you are ready to export this MOCAP data file

Important tips: When you use old Take (either 2D Data or Trajectory file), and want to see how
skeleton move, you should import corresponding skeleton file. In left toolbar, right-click
skeleton and choose proper pre-defined skeleton data. Other way is open skeleton file 1st, then
go to file toolbar. And select open-data and choose old Take (either 2D Data or Trajectory file)
which you want to see.

7. Editing Trajectory
You can fix errors in your captured trajectory. Since this will not be used frequently by users,
we will skip this process in this tutorial. If you want to know more details, you can visit Arena
web-site (http://www.naturalpoint.com/optitrack/products/arena/tutorials.html).

8. Data Streaming and Get Motion data.

If you have either Takes-2D Data (recorded data of skeleton or rigid body movement) or Takes-
Trajectories (imported trajectory file from Takes-2D Data), you can stream motion capture data
through network. If you click Stream toolbar in right of window, you can see IP Address
section which you can write. After inputting correct address, you can choose data which you
want to stream. Usually we choose 3D Marker Positions and Rigid Body Data. Then push Start
Streaming Frames button.

Next, you should know how to receive these streaming data through network.
For this, you should download NATNET SDK package in Arena web-site
(http://www.naturalpoint.com/optitrack/downloads/arena.html).

NatNet's client/server architecture allows client applications to run on the same system as the
tracking software (ARENA/Tracking Tools), on separate system(s), or both. The SDK
integrates seamlessly with standard APIs (C/C++/.NET), tools (Microsoft Visual Studio) and
protocols (UDP/Unicast/Multicast). Using the NatNet SDK, developers can quickly integrate
OptiTrack motion tracking data into new and existing applications, including custom plugins to
third-party applications and engines for real-time streaming.

http://www.naturalpoint.com/optitrack/downloads/arena.html
http://www.naturalpoint.com/optitrack/products/arena/tutorials.html

The version which we currently use is 2.2.

The NatNet SDK consists of :

1 NatNet Library Native C++ networking library (headers, static library (.lib) and dynamic import library (.lib/.dll))
2 NatNet Assembly Managed .NET assembly (NatNetML.dll) for use in .Net compatible clients.
3 NatNet Samples Sample projects and executables designed to be quickly integrated into your own code.

Pre-compiled versions of the NatNet samples have been provided in the \Samples\bin folder.
These versions can be used to quickly test your application. Please refer to the instructions in
this section for information on running specific samples.

Note! The Visual C++ runtime libraries are required to run the samples. If you encounter an

error message when attempting to run the samples, especially on machines without Visual C++
installed, please install the VC runtime redistributable package located in Samples\VCRedist. If
the problem peresists, pleas try rebuildingthe samples using VisualC++, or contact support.

How to run the simple CLIENT-SERVER sample :

1. Start the server:
SimpleServer.exe

2. Start the client:
SampleClient.exe [IPAddress] [OutputFilename.txt]

3. Start streaming by pressing 's' in the SimpleServer console window.
You should begin to see data streaming in the client window or to text file.

Note
1 [parameters] are optional.
2 If no IP address is specified, the client will assume the server is on the same machine (local machine).

The code samples are the quickest path towards getting NatNet data into your application. We
typically recommend you :

1. Identify your application’s development/interface requirements (managed, native, etc).
2. Adapt the NatNet sample code from the corresponding NatNet sample application in the samples folder into your
application.
3. Use the API reference for additional information.
The Visual Studio solution file \Samples\NatNetSamples.sln will open and build all of the NatNet sample projects.

If you are creating an application from scratch, please refer to the following sections for
application specific requirements.

BUILDING A NATIVE CLIENT TO RECEIVE NATNET DATA

Steps for building a NatNet client application/library to receive data from a NatNet server application such as Arena or
TrackingTools:
1. Adapt the SampleClient sample (SampleClient.cpp) to your application's code.
2. Include NatNetClient.h, NatNetHelper.h, and NatNetTypes.h
3. Link to NatNetLib.lib (dynamic) OR NatNetLibStatic.lib (static)
4. [OPTIONAL] If linking dynamically, define NATNETLIB_IMPORTS and distribute NatNetLib.dll with your application
Note : Be sure to link to ws2_32.lib if linking to NatLetLib statically.

BUILDING A NATIVE SERVER TO SEND NATNET DATA

Steps for building a NatNet server application/library to send/forward NatNet formatted data to a NatNet client application:
1. Adapt SimpleServer (SampleServer.cpp) to your application's code.
2. Include NatNetServer.h, NatNetHelper.h, and NatNetTypes.h
3. Link to NatNetLib.lib (dynamic) OR NatNetLibStatic.lib (static)
4. [OPTIONAL] if linking dynamically, define NATNETLIB_IMPORTS and distribute NatNetLib.dll with your application
Note : Be sure to link to ws2_32.lib if linking to NatLetLib statically.

BUILDING A MANAGED .NET CLIENT TO RECEIVE NATNET DATA

Steps for building a managed NatNet client application.
1. Add the NatNetML.dll .NET assembly as a reference to your VB.NET/C# project.
2. The NatNetML namespace is now available to your code, in addition to intellisense library comments.
Note : When distributing your .NET application, be sure to distribute the NatNetML.dll as well.

For more details, you can refer NATNET SDK API
(http://www.naturalpoint.com/optitrack/static/documents/NatNet%20API%20User
%20Guide.pdf).

Programming
The source code to receive marker data and rigid body data is provided below:

 To be compiled with Visual C++ compiler and with NATNET SDK
//===

// Copyright ?2010 NaturalPoint, Inc. All Rights Reserved.

// Modified by Kiwon Sohn for Personal Use. skw1125@gmail.com

//===

/*

SampleClient.cpp

This program connects to a NatNet server, receives a data stream, and writes that data stream

to an ascii file. The purpose is to illustrate using the NatNetClient class.

Usage [optional]:

SampleClient [ServerIP] [LocalIP] [OutputFilename]

[ServerIP] IP address of the server (e.g. 192.168.0.107) (defaults to local

machine)

[OutputFilename] Name of points file (pts) to write out. defaults to Client-output.pts

*/

#include <stdio.h>

#include <tchar.h>

#include <conio.h>

#include <winsock2.h>

#include <math.h>

#include "NatNetTypes.h"

#include "NatNetClient.h"

#pragma warning(disable : 4996)

void _WriteHeader(FILE* fp, sDataDescriptions* pBodyDefs);

void _WriteFrame(FILE* fp, sFrameOfMocapData* data);

void _WriteFooter(FILE* fp);

void __cdecl DataHandler(sFrameOfMocapData* data, void* pUserData); // receives data from

http://www.naturalpoint.com/optitrack/static/documents/NatNet%20API%20User%20Guide.pdf
http://www.naturalpoint.com/optitrack/static/documents/NatNet%20API%20User%20Guide.pdf

the server

void __cdecl MessageHandler(int msgType, char* msg); // receives NatNet error mesages

void resetClient();

int CreateClient(int iConnectionType);

unsigned int MyServersDataPort = 3130;

unsigned int MyServersCommandPort = 3131;

NatNetClient* theClient;

FILE* fp;

char szMyIPAddress[128] = "";

char szServerIPAddress[128] = "";

int _tmain(int argc, _TCHAR* argv[])

{

 int iResult;

 int iConnectionType = ConnectionType_Multicast;

 //int iConnectionType = ConnectionType_Unicast;

 // parse command line args

 if(argc>1)

 {

 strcpy(szServerIPAddress, argv[1]); // specified on command line

 printf("Connecting to server at %s...\n", szServerIPAddress);

 }

 else

 {

 strcpy(szServerIPAddress, ""); // not specified - assume server is local machine

 printf("Connecting to server at LocalMachine\n");

 }

 if(argc>2)

 {

 strcpy(szMyIPAddress, argv[2]); // specified on command line

 printf("Connecting from %s...\n", szMyIPAddress);

 }

 else

 {

 strcpy(szMyIPAddress, ""); // not specified - assume server is local machine

 printf("Connecting from LocalMachine...\n");

 }

 // Create NatNet Client

 iResult = CreateClient(iConnectionType);

 if(iResult != ErrorCode_OK)

 {

 printf("Error initializing client. See log for details. Exiting");

 return 1;

 }

 else

 {

 printf("Client initialized and ready.\n");

 }

// send/receive test request

printf("[SampleClient] Sending Test Request\n");

void* response;

int nBytes;

iResult = theClient->SendMessageAndWait("TestRequest", &response, &nBytes);

if (iResult == ErrorCode_OK)

{

printf("[SampleClient] Received: %s", (char*)response);

}

// Retrieve Data Descriptions from server

printf("\n\n[SampleClient] Requesting Data Descriptions...");

sDataDescriptions* pDataDefs = NULL;

int nBodies = theClient->GetDataDescriptions(&pDataDefs);

if(!pDataDefs)

{

printf("[SampleClient] Unable to retrieve Data Descriptions.");

//return 1;

}

else

{

 printf("[SampleClient] Received %d Data Descriptions:\n", pDataDefs->nDataDescriptions);

 for(int i=0; i < pDataDefs->nDataDescriptions; i++)

 {

 printf("Data Description # %d (type=%d)\n", i, pDataDefs->arrDataDescriptions[i].type);

 if(pDataDefs->arrDataDescriptions[i].type == Descriptor_MarkerSet)

 {

 // MarkerSet

 sMarkerSetDescription* pMS = pDataDefs-

>arrDataDescriptions[i].Data.MarkerSetDescription;

 printf("MarkerSet Name : %s\n", pMS->szName);

 for(int i=0; i < pMS->nMarkers; i++)

 printf("%s\n", pMS->szMarkerNames[i]);

 }

 else if(pDataDefs->arrDataDescriptions[i].type == Descriptor_RigidBody)

 {

 // RigidBody

 sRigidBodyDescription* pRB = pDataDefs-

>arrDataDescriptions[i].Data.RigidBodyDescription;

 printf("RigidBody Name : %s\n", pRB->szName);

 printf("RigidBody ID : %d\n", pRB->ID);

 printf("RigidBody Parent ID : %d\n", pRB->parentID);

 printf("Parent Offset : %3.2f,%3.2f,%3.2f\n", pRB->offsetx, pRB->offsety, pRB->offsetz);

 }

 else if(pDataDefs->arrDataDescriptions[i].type == Descriptor_Skeleton)

 {

 // Skeleton

 sSkeletonDescription* pSK = pDataDefs->arrDataDescriptions[i].Data.SkeletonDescription;

 printf("Skeleton Name : %s\n", pSK->szName);

 printf("Skeleton ID : %d\n", pSK->skeletonID);

 printf("RigidBody (Bone) Count : %d\n", pSK->nRigidBodies);

 for(int j=0; j < pSK->nRigidBodies; j++)

 {

 sRigidBodyDescription* pRB = &pSK->RigidBodies[j];

 printf(" RigidBody Name : %s\n", pRB->szName);

 printf(" RigidBody ID : %d\n", pRB->ID);

 printf(" RigidBody Parent ID : %d\n", pRB->parentID);

 printf(" Parent Offset : %3.2f,%3.2f,%3.2f\n", pRB->offsetx, pRB->offsety, pRB-

>offsetz);

 }

 }

 else

 {

 printf("Unknown data type.");

 // Unknown

 }

 }

}

// Create data file for writing received stream into

char szFile[MAX_PATH];

char szFolder[MAX_PATH];

GetCurrentDirectory(MAX_PATH, szFolder);

if(argc > 3)

sprintf(szFile, "%s\\%s", szFolder, argv[3]);

else

sprintf(szFile, "%s\\Client-output.pts",szFolder);

fp = fopen(szFile, "w");

if(!fp)

{

printf("error opening output file %s. Exiting.", szFile);

exit(1);

}

if(pDataDefs)

_WriteHeader(fp, pDataDefs);

// Ready to receive marker stream!

printf("\nClient is connected to server and listening for data...\n");

int c;

bool bExit = false;

while(c =_getch())

{

switch(c)

{

case 'q':

bExit = true;

break;

case 'r':

resetClient();

break;

 case 'p':

 sServerDescription ServerDescription;

 memset(&ServerDescription, 0, sizeof(ServerDescription));

 theClient->GetServerDescription(&ServerDescription);

 if(!ServerDescription.HostPresent)

 {

 printf("Unable to connect to server. Host not present. Exiting.");

 return 1;

 }

 break;

 case 'f':

 {

 sFrameOfMocapData* pData = theClient->GetLastFrameOfData();

 printf("Most Recent Frame: %d", pData->iFrame);

 }

 break;

 case 'm': // change to multicast

 iResult = CreateClient(ConnectionType_Multicast);

 if(iResult == ErrorCode_OK)

 printf("Client connection type changed to Multicast.\n\n");

 else

 printf("Error changing client connection type to Multicast.\n\n");

 break;

 case 'u': // change to unicast

 iResult = CreateClient(ConnectionType_Unicast);

 if(iResult == ErrorCode_OK)

 printf("Client connection type changed to Unicast.\n\n");

 else

 printf("Error changing client connection type to Unicast.\n\n");

 break;

default:

break;

}

if(bExit)

break;

}

// Done - clean up.

theClient->Uninitialize();

_WriteFooter(fp);

fclose(fp);

return ErrorCode_OK;

}

// Establish a NatNet Client connection

int CreateClient(int iConnectionType)

{

 // release previous server

 if(theClient)

 {

 theClient->Uninitialize();

 delete theClient;

 }

 // create NatNet client

 theClient = new NatNetClient(iConnectionType);

 // [optional] use old multicast group

 //theClient->SetMulticastAddress("224.0.0.1");

 // print version info

 unsigned char ver[4];

 theClient->NatNetVersion(ver);

 printf("NatNet Sample Client (NatNet ver. %d.%d.%d.%d)\n", ver[0], ver[1], ver[2], ver[3]);

 // Set callback handlers

 theClient->SetMessageCallback(MessageHandler);

 theClient->SetVerbosityLevel(Verbosity_Debug);

 theClient->SetDataCallback(DataHandler, theClient); // this function will receive data from the

server

 // Init Client and connect to NatNet server

 // to use NatNet default port assigments

 int retCode = theClient->Initialize(szMyIPAddress, szServerIPAddress);

 // to use a different port for commands and/or data:

 //int retCode = theClient->Initialize(szMyIPAddress, szServerIPAddress, MyServersCommandPort,

MyServersDataPort);

 if (retCode != ErrorCode_OK)

 {

 printf("Unable to connect to server. Error code: %d. Exiting", retCode);

 return ErrorCode_Internal;

 }

 else

 {

 // print server info

 sServerDescription ServerDescription;

 memset(&ServerDescription, 0, sizeof(ServerDescription));

 theClient->GetServerDescription(&ServerDescription);

 if(!ServerDescription.HostPresent)

 {

 printf("Unable to connect to server. Host not present. Exiting.");

 return 1;

 }

 printf("[SampleClient] Server application info:\n");

 printf("Application: %s (ver. %d.%d.%d.%d)\n", ServerDescription.szHostApp,

ServerDescription.HostAppVersion[0],

 ServerDescription.HostAppVersion[1],ServerDescription.HostAppVersion[2],ServerDescription.Ho

stAppVersion[3]);

 printf("NatNet Version: %d.%d.%d.%d\n", ServerDescription.NatNetVersion[0],

ServerDescription.NatNetVersion[1],

 ServerDescription.NatNetVersion[2], ServerDescription.NatNetVersion[3]);

 printf("Client IP:%s\n", szMyIPAddress);

 printf("Server IP:%s\n", szServerIPAddress);

 printf("Server Name:%s\n\n", ServerDescription.szHostComputerName);

 }

 return ErrorCode_OK;

}

// DataHandler receives data from the server

void __cdecl DataHandler(sFrameOfMocapData* data, void* pUserData)

{

NatNetClient* pClient = (NatNetClient*) pUserData;

printf("Received frame %d\n", data->iFrame);

if(fp)

_WriteFrame(fp,data);

int i=0;

 // same system latency test

 float fThisTick = (float)GetTickCount();

 float fDiff = fThisTick - data->fLatency;

 double dDuration = fDiff;

 printf("Latency (same system) (msecs): %3.2lf\n", dDuration);

// Other Markers

printf("Other Markers [Count=%d]\n", data->nOtherMarkers);

for(i=0; i < data->nOtherMarkers; i++)

{

printf("Other Marker %d : %3.2f\t%3.2f\t%3.2f\n",

i,

data->OtherMarkers[i][0],

data->OtherMarkers[i][1],

data->OtherMarkers[i][2]);

}

// Rigid Bodies

printf("Rigid Bodies [Count=%d]\n", data->nRigidBodies);

for(i=0; i < data->nRigidBodies; i++)

{

printf("Rigid Body [ID=%d Error=%3.2f]\n", data->RigidBodies[i].ID, data-

>RigidBodies[i].MeanError);

printf("\tx\ty\tz\tqx\tqy\tqz\tqw\n");

printf("\t%3.2f\t%3.2f\t%3.2f\t%3.2f\t%3.2f\t%3.2f\t%3.2f\n",

data->RigidBodies[i].x,

data->RigidBodies[i].y,

data->RigidBodies[i].z,

data->RigidBodies[i].qx,

data->RigidBodies[i].qy,

data->RigidBodies[i].qz,

data->RigidBodies[i].qw);

printf("\tRigid body markers [Count=%d]\n", data->RigidBodies[i].nMarkers);

for(int iMarker=0; iMarker < data->RigidBodies[i].nMarkers; iMarker++)

{

 printf("\t\t");

 if(data->RigidBodies[i].MarkerIDs)

 printf("MarkerID:%d", data->RigidBodies[i].MarkerIDs[iMarker]);

 if(data->RigidBodies[i].MarkerSizes)

 printf("\tMarkerSize:%3.2f", data->RigidBodies[i].MarkerSizes[iMarker]);

 if(data->RigidBodies[i].Markers)

 printf("\tMarkerPos:%3.2f,%3.2f,%3.2f\n" ,

 data->RigidBodies[i].Markers[iMarker][0],

 data->RigidBodies[i].Markers[iMarker][1],

 data->RigidBodies[i].Markers[iMarker][2]);

 }

}

 // skeletons

 printf("Skeletons [Count=%d]\n", data->nSkeletons);

 for(i=0; i < data->nSkeletons; i++)

 {

 sSkeletonData skData = data->Skeletons[i];

 printf("Skeleton [ID=%d Bone count=%d]\n", skData.skeletonID, skData.nRigidBodies);

 for(int j=0; j< skData.nRigidBodies; j++)

 {

 sRigidBodyData rbData = skData.RigidBodyData[j];

 printf("Bone %d\t%3.2f\t%3.2f\t%3.2f\t%3.2f\t%3.2f\t%3.2f\t%3.2f\n",

 rbData.ID, rbData.x, rbData.y, rbData.z, rbData.qx, rbData.qy, rbData.qz,

rbData.qw);

 printf("\tRigid body markers [Count=%d]\n", rbData.nMarkers);

 for(int iMarker=0; iMarker < data->RigidBodies[i].nMarkers; iMarker++)

 {

 printf("\t\t");

 if(rbData.MarkerIDs)

 printf("MarkerID:%d", rbData.MarkerIDs[iMarker]);

 if(rbData.MarkerSizes)

 printf("\tMarkerSize:%3.2f", rbData.MarkerSizes[iMarker]);

 if(rbData.Markers)

 printf("\tMarkerPos:%3.2f,%3.2f,%3.2f\n" ,

 data->RigidBodies[i].Markers[iMarker][0],

 data->RigidBodies[i].Markers[iMarker][1],

 data->RigidBodies[i].Markers[iMarker][2]);

 }

 }

 }

}

// MessageHandler receives NatNet error/debug messages

void __cdecl MessageHandler(int msgType, char* msg)

{

printf("\n%s\n", msg);

}

/* File writing routines */

void _WriteHeader(FILE* fp, sDataDescriptions* pBodyDefs)

{

int i=0;

 if(!pBodyDefs->arrDataDescriptions[0].type == Descriptor_MarkerSet)

 return;

sMarkerSetDescription* pMS = pBodyDefs->arrDataDescriptions[0].Data.MarkerSetDescription;

fprintf(fp, "<MarkerSet>\n\n");

fprintf(fp, "<Name>\n%s\n</Name>\n\n", pMS->szName);

fprintf(fp, "<Markers>\n");

for(i=0; i < pMS->nMarkers; i++)

{

fprintf(fp, "%s\n", pMS->szMarkerNames[i]);

}

fprintf(fp, "</Markers>\n\n");

fprintf(fp, "<Data>\n");

fprintf(fp, "Frame#\t");

for(i=0; i < pMS->nMarkers; i++)

{

fprintf(fp, "M%dX\tM%dY\tM%dZ\t", i, i, i);

}

fprintf(fp,"\n");

 fprintf(fp,"\n");

fprintf(fp,"Bone: 'Hip','Ab','Chest', 'Neck', 'Head', 'N', 'LShoulder', 'LUarm', 'LFarm',

'LHand', 'N', 'RShoulder', 'RUarm', 'RFarm',

'RHand','N','LThigh','LShin','LFoot','N','LThigh','LShin','LFoot','N'");

 fprintf(fp,"\n");

}

inline void RadiansToDegrees(float *value)

{

 *value = (*value)*(180.0f/3.14159265f);

}

void GetEulers(float qx, float qy, float qz, float qw, float *angle1,float *angle2, float *angle3)

{

 float &heading = *angle1;

 float &attitude = *angle2;

 float &bank = *angle3;

double test = qw*qx + qy*qz;

if (test > 0.499) { // singularity at north pole

heading = (float) 2.0f * atan2(qy,qw);

attitude = 3.14159265f/2.0f;

bank = 0;

 RadiansToDegrees(&heading);

 RadiansToDegrees(&attitude);

 RadiansToDegrees(&bank);

return;

}

if (test < -0.499) { // singularity at south pole

heading = (float) -2.0f * atan2(qy,qw);

attitude = - 3.14159265f/2.0f;

bank = 0;

 RadiansToDegrees(&heading);

 RadiansToDegrees(&attitude);

 RadiansToDegrees(&bank);

return;

}

 double sqx = qx*qx;

 double sqy = qy*qy;

 double sqz = qz*qz;

 heading = (float) atan2((double)2.0*qw*qz-2.0*qx*qy , (double)1 - 2.0*sqz - 2.0*sqx);

attitude = (float)asin(2.0*test);

bank = (float) atan2((double)2.0*qw*qy-2.0*qx*qz , (double)1.0 - 2.0*sqy - 2.0*sqx);

 RadiansToDegrees(&heading);

 RadiansToDegrees(&attitude);

 RadiansToDegrees(&bank);

}

void _WriteFrame(FILE* fp, sFrameOfMocapData* data)

{ fprintf(fp, "\n"); fprintf(fp, "Frame ");

fprintf(fp, "%d ", data->iFrame);

/*for(int i =0; i < data->MocapData->nMarkers; i++)

{

fprintf(fp, "\t%.5f\t%.5f\t%.5f", data->MocapData->Markers[i][0], data->MocapData-

>Markers[i][1], data->MocapData->Markers[i][2]);

}*/

/*for(int i =0; i < data->nRigidBodies; i++)

{

fprintf(fp, "\t%3.2f\t%3.2f\t%3.2f\t%3.2f\t%3.2f\t%3.2f\t%3.2f\n",

data->RigidBodies[i].x,

data->RigidBodies[i].y,

data->RigidBodies[i].z,

data->RigidBodies[i].qx,

data->RigidBodies[i].qy,

data->RigidBodies[i].qz,

data->RigidBodies[i].qw);

}*/

 for(int i=0; i < data->nSkeletons; i++)

 {

 sSkeletonData skData = data->Skeletons[i];

 fprintf(fp, "Skeleton [ID=%d Bone count=%d]\n", skData.skeletonID, skData.nRigidBodies);

 for(int j=0; j< skData.nRigidBodies; j++)

 { fprintf(fp, "\n");

 sRigidBodyData rbData = skData.RigidBodyData[j];

float yaw, pitch, roll;

 GetEulers(rbData.qx, rbData.qy, rbData.qz, rbData.qw, &yaw, &pitch, &roll);

 //fprintf(fp,"%s ", bonename[j]);

 fprintf(fp, "Bone %d\n Position %3.2f\t%3.2f\t%3.2f\n Rotation %3.2f\t%3.2f\t%3.2f\t%3.2f\n

Euler %3.2f\t%3.2f\t%3.2f\n",

 rbData.ID, 1.0*rbData.x, rbData.y, rbData.z, rbData.qx, rbData.qy, rbData.qz,

rbData.qw , yaw, pitch, roll);

 fprintf(fp, "\tRigid body markers [Count=%d]\n", rbData.nMarkers);

 //for(int iMarker=0; iMarker < data->RigidBodies[i].nMarkers; iMarker++)

 for(int iMarker=0; iMarker < rbData.nMarkers; iMarker++)

 {

 fprintf(fp, "\t\t");

 if(rbData.Markers)

 fprintf(fp, "\tMarkerPos:%3.2f,%3.2f,%3.2f\n" ,

 1.0*rbData.Markers[iMarker][0],

 rbData.Markers[iMarker][1],

 rbData.Markers[iMarker][2]);

 }

 }

 }

fprintf(fp, "\n");

}

void _WriteFooter(FILE* fp)

{

fprintf(fp, "</Data>\n\n");

fprintf(fp, "</MarkerSet>\n");

}

void resetClient()

{

int iSuccess;

printf("\n\nre-setting Client\n\n.");

iSuccess = theClient->Uninitialize();

if(iSuccess != 0)

printf("error un-initting Client\n");

iSuccess = theClient->Initialize(szMyIPAddress, szServerIPAddress);

if(iSuccess != 0)

printf("error re-initting Client\n");

}

We will also upload this code “SampleClient.cpp” in our Website.

Final Words
Objective of Tutorial 1 and 2 was to make readers understand how to install and use Arena Motion
Capture System. Tutorial 1 and 2 complete construction details, calibration and capturing for this
system. Once the concepts were conveyed the reader could setup systems and get motion data of
targets to be tracked. If you have questions, please feel free to contact with me. You can also get
solutions from Arena website. They have online tutorials and show all of processes in this tutorial in
details.

	Programming
	Final Words

