
Control of a Servo using PIC 16F84 and an
Infrared Sensor
One basic application of PIC microcontrollers is their use to control motion based on input from a
sensor. This is applicable to many different fields, from manufacturing to aeronautics to robotics. This
tutorial will demonstrate the control of a Futaba servo motor using a PIC 16F84 microcontroller and
input from a Sharp GP2D02 IR sensor.

MOTIVATION AND AUDIENCE

The focus of this tutorial is to demonstrate a method for receiving input from an GP2D02 IR sensor and
translating it into a control signal for a servo motor. This tutorial will teach you:

• What a PWM signal is.
• How to write code to control and receive input from a GP2D02 IR sensor.
• How to write code to control a Futaba servo motor.

To do this, it is assumed that you already:

• Have completed "A Fast Track to PIC Programming".

The rest of the tutorial is presented as follows:

• Parts List and Sources
• Construction
• Programming
• Final Words

PARTS LIST AND SOURCES

In order to complete this tutorial you must have the circuit from the tutorial "A Fast Track to PIC
Programming" (minus the dip switches and resistor LED circuits). The only additional parts you will
require are:

TABLE 1

PART DESCRIPTION VENDOR PART PRICE (2003) QTY

GP2D02 IR Sensor Acroname R19-IR02 21.00 1

Futaba Servo Motor RC Hobby Center FUTM0031 21.99 1

This sensor was chosen because of its compactness and the wide range over which it can measure. It
is also easily interfaceable with microcontrollers and has good control over ambient noise. The servo
chosen is a standard servo, however, any servo that operates off of PWM input will do (timing may
vary).

To construct the circuit, you will also need:

• a soldering iron with a fine point
• materials for soldering (solder, flux, etc.)
• small gauge wire

• wire strippers
• multimeter
• DC power supply

The items listed above can all be purchased from an electronics store such as Radio Shack. Some
hardware such as Home Depot carry tools like wire strippers and multimeters.

CONSTRUCTION

The first part of the construction involves preparing the sensor to be hooked up to the PIC. The sensor
comes with a connector and four different colored wires. The connector has small numbers on it, and
the wires should be placed as follows:

Pin 1 Pin 2 Pin 3 Pin 4

Sensor Pin GND Vin Vcc Vout

Wire Color Black Green Red Yellow

The circuit used to used to communicate with the PIC is the same circuit used from the afore
mentioned tutorial with different inputs and outputs. This time input will be coming from the sensor, and
output will be going to the sensor to control it and to the servo. To achieve this, the devices should be
wired as follows:

Figure 1

Port A1 (Fig 1 - Pin 18) <=WIRED TO=> Vout on sensor (yellow wire on sensor)
Port B4 (Fig 1 - Pin 10) <=WIRED TO=> Vin on sensor (green wire on sensor)
Port B0 (Fig 1 - Pin 6) <=WIRED TO=> Command to servo (white wire on servo)

It should be noted that it is necessary to connect a diode (1N4148 or equivalent) inline between the
PIC output line and the sensor Vin line, with the cathode (marked with a line) facing the PIC. This diode
is provided in the package from Acroname.

This circuit will allow us to receive input from port A of the PIC and send output to port B. The ports
were chosen to seperate inputs and outputs and to facilitate the insertion of other sensors. Different
ports could be used, however, the code must be changed accordingly.

PROGRAMMING

Figure 2

Figure 2 above shows the command signal that must be generated to begin a reading and the resulting
output from the sensor. To initialize a reading, the command to the sensor must be held low for a
minimum of 70 msec, and then brought high for a minimum of 2 msec. From this point, one of 8 bits is
outputed at each falling command edge, starting with the most signifficant bit. After all 8 bits have been
outputted, the command must be brought low for 70 msec again to initialize another reading.

Figure 3

Figure 3 shows the output from the sensor as distance varies. As can be seen, the output is non-linear.
If you wish to have a linear response, such as turning a servo motor to a specific point based on

distance, you must employ a method to linearize the response. The method used in this tutorial was
breaking up the response into 2 linear regions. This will be seen later in the programming.

Figure 4

Control of the servo is achieved by generating a PWM signal. A PWM signal is simply a pulse of
varying length that can be translated into a position requested of the servo. This is illustrated in Figure
4. Generally, the length of the pulse for a servo varies between 1 msec and 2 msec over a 20 msec
period.

The following code requests a reading from the sensor, receives the reading, and transforms the
reading into a signal that is outputted to the servo.

IRserv.asm

; FILE: IRserv.asm
; AUTH: Keith Sevcik
; DATE: 1/27/03
; DESC:
; NOTE: Tested on PIC16F84-04/P

;--
; cpu equates (memory map)

list p=16f84
radix hex

;--

status equ 0x03 ; status equate
porta equ 0x05 ; port a equate
portb equ 0x06 ; port b equate
IRout equ 0x11 ; IR output
PWM equ 0x0c ; PWM signal length
count equ 0x0d ; general register
temp equ 0x0e ; general register
loop equ 0x0f ; general register
bits equ 0x10 ; number of bits to read
addpwm equ 0x12 ; general register

;---

c equ 0 ; status bit to check after subtraction

;---

org 0x000

start movlw 0x00 ; load W with 0x00 make port B output
tris portb ; port B is outputs
movlw 0xFF ; load W with 0xFF make port A input
tris porta ; port A is inputs
movlw 0x00 ; load W with 0x00 to set intial value of B
movwf portb ; set port b outputs to low

;---
; Port b4 is control to sensor
; Port a1 is input from sensor
; Port b0 is output to servo

main
bcf portb, 4 ; turn on detector
nop

wait_for_reading
btfss porta, 1 ; wait until done
goto wait_for_reading ; with measurement
bsf portb, 4 ; bring detector high
clrf IRout ; clear old value
movlw 8 ; set up to clock out data
movwf bits
movlw 4 ; set up to clock out data
movwf count
bcf status, c ; ensure carry bit clear for rotates
nop ; clock delay

read_bit
bcf portb, 4 ; bring detector low
nop ; clock delay
call delay
nop
rlf IRout, f ; roll out prev. bit
btfsc porta, 1 ; check bit on output
bsf IRout, 0 ; set if output 1
bsf portb, 4 ; bring detector high
nop ; clock delay
call delay
nop
decfsz bits, f ; all 8 bits done?
goto read_bit

;---
; output from the sensor is in IRout. Now we need to scale it to PWM.
; We must seperate it into 2 linear ranges.

movf IRout,w ; move the output to w
sublw d'110' ; subtract 110 from the output
btfsc status,c ; if the output was under 110, skip to lower
goto lower
movlw d'230' ; else store 230 in temp
movwf temp
movf IRout,w ; move the output to w
subwf temp,f ; subtract the output from 230 and store the result in temp
call divide ; call the divide routine
goto PWMstrt ; skip to PWMstrt

lower movlw d'110' ; move 110 into temp
movwf temp
movf IRout,w ; move the output to w
subwf temp,f ; subtract the output from 110
call mult ; call the mult routine

;---
PWMstrt clrf count

movf PWM,w ; move PWM to w
sublw d'220' ; subtract PWM cycle from 220

btfsc status,c ; if PWM is greater than 220, skip next instruction
goto skip1
movlw d'220' ; set 220 as the upper limit to PWM
movwf PWM

skip1 movf PWM,w ; move PWM to w
sublw d'20' ; subtract PWM cycle from 20
btfss status,c ; if PWM is greater than 20, skip next instruction
goto skip2
movlw d'20' ; set 20 as the lower limit to PWM
movwf PWM

skip2 movlw d'1' ; set the delay for generating the PWM
movwf count
bsf portb,0 ; start the PWM pulse

LoopPWM movf count,w
movwf temp

rep decfsz temp
goto rep
nop
nop
nop
decfsz PWM ; decrement the PWM length
goto LoopPWM ; as long as PWM is greater than 0, loop
bcf portb,0 ; when done looping, stop the pulse
movlw d'15' ; set the counter for generating the rest of the PWM signal
movwf loop

del15 movlw d'255' ; set the delay counter
movwf count
call delay
decfsz loop
goto del15
goto main

;--

delay movf count,w ; delay loop
movwf temp

del decfsz temp ; 3 clock cycles per delay loop
goto del
return

;--

;--

divide bcf status, c ; make sure the carry bit is clear
movlw 0
movwf addpwm ; initialize addpwm as 0

min incf addpwm,f ; increment addpwm
movlw d'2' ; move 2 to w
subwf temp,f ; subtract 2 from temp
btfsc status,c ; repeat as long as there is a carry
goto min
movlw d'210'
movwf PWM ; store 210 in PWM
movf addpwm,w
subwf PWM,f ; subtract addpwm from 210, inverting the input
return

;--

;--

mult bcf status, c ; make sure the carry bit is clear
movlw 0
movwf addpwm ; initialize addpwm as 0

add movlw d'3'
addwf addpwm,f ; increment addpwm by 3

decfsz temp ; decrement temp as long as it is > 0
goto add
movlw d'150'
movwf PWM ; store 150 in PWM
movf addpwm,w
subwf PWM,f ; subtract addpwm from 150, inverting the input
return

;--

end

;--
; at burn time, select:
; memory uprotected
; watchdog timer disabled
; standard crystal (4 MHz)
; power-up timer on

HEADER AND EQUATES

The first portion of code is the header and register equates. For more information about the meaning of
the header see the previous tutorial.

list p=16f84
radix hex

;--

status equ 0x03 ; status equate
porta equ 0x05 ; port a equate
portb equ 0x06 ; port b equate
IRout equ 0x11 ; IR output
PWM equ 0x0c ; PWM signal length
count equ 0x0d ; general register
temp equ 0x0e ; general register
loop equ 0x0f ; general register
bits equ 0x10 ; number of bits to read
addpwm equ 0x12 ; general register

;---

c equ 0 ; status bit to check after subtraction

;---
; portb4 is control to sensor
; porta1 is input from sensor
; portb0 is output to servo

org 0x000

The equates of signifficance here are IRout, PWM and bits. The IRout register will be used to store the
output from the sensor. The PWM register will be used to store the length of the PWM signal to be
generated. The bits register stores the number of bits to be received from the sensor.

INSTRUCTIONS

The next portion of code contains the actual instructions that tell the PIC what to do.

start movlw 0x00 ; load W with 0x00 make port B output
tris portb ; port B is outputs
movlw 0xFF ; load W with 0xFF make port A input

tris porta ; port A is inputs
movlw 0x00 ; load W with 0x00 to set intial value of B
movwf portb ; set port b outputs to low

These lines set up port A as inputs and port B as outputs. All outputs are then set to low.

main
bcf portb, 4 ; turn on detector
nop

wait_for_reading
btfss porta, 1 ; wait until done
goto wait_for_reading ; with measurement

The main loop begins by setting the command signal to the sensor low, thereby intializing a reading.
The PIC then waits for the sensor to signal that it is done taking a reading by setting the output high.

bsf portb, 4 ; bring detector high
clrf IRout ; clear old value
movlw 8 ; set up to clock out data
movwf bits
movlw 4 ; set up to clock out data
movwf count
bcf status, c ; ensure carry bit clear for rotates
nop ; clock delay

The next bit of code prepares the PIC to receive input from the sensor. The command signal is brought
high. The bits register is set to 8 to set the number of bits to read from the sensor. A clock delay of 4 is
set and the carry bit of the status register is cleared.

read_bit
bcf portb, 4 ; bring detector low
nop ; clock delay
call delay
nop
rlf IRout, f ; roll out prev. bit
btfsc porta, 1 ; check bit on output
bsf IRout, 0 ; set if output 1
bsf portb, 4 ; bring detector high
nop ; clock delay
call delay
nop
decfsz bits, f ; all 8 bits done?
goto read_bit

This portion of code actually reads the input from the sensor. The clock is brought low and the previous
bit is moved to the left clearing the way for the next bit. A bit is then read from port A, stored in the
register IRout and the command is brought high again for a short delay. The number of bits read is
decremented, and so long as the bits register is greater than 0, the program loops back to read the
next bit.

movf IRout,w ; move the output to w
sublw d'110' ; subtract 110 from the output
btfsc status,c ; if the output was under 110, skip to lower
goto lower
movlw d'230' ; else store 230 in temp
movwf temp
movf IRout,w ; move the output to w
subwf temp,f ; subtract the output from 230 and store the result in temp
call divide ; call the divide routine
goto PWMstrt ; skip to PWMstrt

lower movlw d'110' ; move 110 into temp
movwf temp
movf IRout,w ; move the output to w
subwf temp,f ; subtract the output from 110
call mult ; call the mult routine

This code divides the output into 2 linear regions, the cutoff point being a value of 110 from the sensor.
If the value outputted is below 110, the program skips to a portion of code that processes lower
regions. The value is stored in temp, and the program then proceeds to a subroutine that effectively
divides the output. If the value is above 110, the value again is stored in temp, but the program
continues to a subroutine that multiplies the input. We'll now go out of order to see what happens in
these various subroutines.

divide bcf status, c ; make sure the carry bit is clear
movlw 0
movwf addpwm ; initialize addpwm as 0

min incf addpwm,f ; increment addpwm
movlw d'2' ; move 2 to w
subwf temp,f ; subtract 2 from temp
btfsc status,c ; repeat as long as there is a carry
goto min
movlw d'210'
movwf PWM ; store 210 in PWM
movf addpwm,w
subwf PWM,f ; subtract addpwm from 210, inverting the input
return

The divide subroutine scales down the input for inputed values greater than 110. This portion of the
input has a high gain. It is therefore necessary to scale down the input to get it to match the relatively
low gain for values less than 110. This is achieved by successively subtracting 2 from the input and
subsequently adding 1 to a temporary value. If you noticed, the input is inversely proportional to the
output (i.e. the input gets greater the closer the object is). To invert this, the input is subtracted from
210. Therefore, the highest input (the closest object) will be translated into a low PWM value.

mult bcf status, c ; make sure the carry bit is clear
movlw 0
movwf addpwm ; initialize addpwm as 0

add movlw d'3'
addwf addpwm,f ; increment addpwm by 3
decfsz temp ; decrement temp as long as it is > 0
goto add
movlw d'150'
movwf PWM ; store 150 in PWM
movf addpwm,w
subwf PWM,f ; subtract addpwm from 150, inverting the input
return

The mult subroutine scales up the input for inputted values less than 110. This portion of the input has
a low gain. It must be scaled up to match the high gain of the other region. This is achieved by
successively subtracting 1 from the input and subsequently adding 3 to a temporary value. In effect,
this multiplies the input by 3. Again, the value must be inverted as it is inversely proportional to
distance. Both of these subroutines output a PWM signal length. We now jump back to where we left
the code.

movf PWM,w ; move PWM to w
sublw d'225' ; subtract PWM cycle from 200 (2 msec)
btfsc status,c ; if PWM is greater than 200 (2 msec), skip next instruction
goto skip1
movlw d'200' ; else set the max PWM length to 200

movwf PWM
skip1 movf PWM,w ; move PWM to w

sublw d'20' ; subtract PWM cycle from 200 (2 msec)
btfss status,c ; if PWM is greater than 200 (2 msec), skip next instruction
goto skip2
movlw d'20' ; else set the min PWM length to 20
movwf PWM

These lines set a max and min value for the PWM signal to prevent it from damaging the servo. It
subtracts a value of 200 and 20 from the PWM signal and tests to see if there wasnt or was a carry,
respectively. If the PWM length fails either test, it is set to either the max or min and the program
continues.

skip2 movlw d'1' ; set the delay for generating the PWM
movwf count
bsf portb,0 ; start the PWM pulse

LoopPWM call delay
nop
nop
nop
decfsz PWM ; decrement the PWM length
goto LoopPWM ; as long as PWM is greater than 0, loop
bcf portb,0 ; when done looping, stop the pulse

This code actually generates the PWM pulse. A delay length is stored in the count register. The output
to the sensor is then set high. This brins the program into a loop that decrements the PWM register,
delays, and then continues to loop so long as the value of the PWM register is greater than 0. After
completing the loop, the output to the servo is brought low again.

movlw d'15' ; set the counter for generating the rest of the PWM signal
movwf loop

del15 movlw d'255' ; set the delay counter
movwf count
call delay
decfsz loop
goto del15
goto main

This final bit of code generates the remainder of the PWM signal. It consists of a delay nested inside a
loop to complete the 20 msec period. When the loop has finished, the entire program is repeated.

FINAL WORDS

After completing this tutorial you should be familiar with the GP2D02 infrared sensor, PWM control of a
servo and be able to write code for a PIC 16F84 to control a servo based on input from an infrared
sensor.

If you have questions about this tutorial you can email me at Keithicus@drexel.edu.

