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Abstract 

This paper presents the design of a high accuracy outdoor navigation system based on standard dead reckoning sensors and 

laser range and bearing information. The data validation problem is addressed using laser intensity information. The beacon 

design aspect and location of landmarks are also discussed in relation to desired accuracy and required area of operation. 

The results are important for Simultaneous Localization and Map building applications, (SLAM), since the feature 

extraction and validation are resolved at the sensor level using laser intensity. This facilitates the use of additional natural 

landmarks to improve the accuracy of the localization algorithm. The modelling aspects to implement SLAM with beacons 

and natural features are also presented. These results are of fundamental importance because the implementation of the 

algorithm does not require the surveying of beacons. Furthermore we demonstrate that by using natural landmarks high 

accurate localization can be achieved by only requiring the initial estimate of the position of the vehicle.   The algorithms 

are validated in outdoor environments using a standard utility car retrofitted with the navigation sensors and a 1 cm 

precision Kinematic GPS used as ground truth.  

1 Introduction 
Reliable localization is an essential component of any autonomous vehicle. The basic navigation loop is based on dead 

reckoning sensors that predict the vehicle high frequency manoeuvres and low frequency absolute sensors that bound the 

positioning errors [1]. 

For almost every land navigation application we can always find an appropriate combination of dead reckoning sensors that 

can be used to obtain a reasonable prediction of the trajectory of the vehicle, [2],[3]. With external sensors the problem is 

more complicated. Although there are many different types of external sensors, only few of them can be used in a particular 

application and the reliability will be function of the environment of operation, [4].  

It is well known that with the different GPS implementations, position fixes with errors of the order of 1 cm. to 100 m. can 

be obtained in real time. Nevertheless this accuracy cannot be guarantee all the time in most working environments where 

partial satellite occlusion and multipath effects can prevent normal GPS receiver operation. Similar problems are 

experienced with some other type of sensors such as Stereo Vision, Ultrasonic, Laser and Radars. 

A significant amount of work has been devoted to the use of range and bearing sensors for localization purposes. Ultrasonic 

sensors have been widely used in indoor applications [5], but they are not adequate for most outdoor applications due to 

range limitations and bearing uncertainties. 
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Stereovision has been the object of research in many important research laboratories around the world.  Recently in [6], 

stereoscopic omni directional systems were used in indoor localization applications. This type of sensor is based on a 

conical mirror and a camera that returns a panoramic image of the environment surrounding the vehicle. Although a 

promising technology, the complexity and its poor dynamic range made this technique still not very reliable for outdoor 

applications. 

Millimeter Wave Radar [7], is an emerging technology that has enormous potential for obstacle detection, map building and 

navigation in indoor and outdoor applications. The main drawback of this technology is its actual cost but this is expected 

to change in the near future. Millimeter Wave Radar had been used for localization purposes in [8] and in SLAM 

applications in [9]. In this case, special beacons were designed to increase the echo return intensity such that simple 

threshold or more sophisticated polarization techniques can be used to discriminate beacons from background at the sensor 

level. 

Range and bearing lasers have become one of the most attractive sensors for localization and map building purposes due to 

their accuracy and low cost.  Most common lasers provide range and bearing information with sub degree resolution and 

accuracies of the order of 1-10 cm in 10-50 meter ranges. 

There are a number of works that addressed the localization using pose information  [10], [11]. These works update the 

position of the vehicle based on the determination of the transformation between the pose of the robot and the laser 

measurements. Laser has also been used to determine natural features in indoor environments. In [12] a comparison of the 

behaviour monocular, trinocular and laser in localization applications is presented. 

One of the most difficult problems for any beacon localization based algorithm is not feature extraction, but feature 

validation and data association. That is to confirm that the extracted feature is a valid feature and to associate it with a 

known or estimated feature in the world map. Data association is essential for the SLAM problem. This problem has been 

addressed in previous works using redundant information by looking for stable features [9] or using a combination of 

sensors such as in [13], where vision information is used to validate certain type of features extracted form laser 

information. 

This work makes use of laser intensity information to recognize landmarks. It presents the characterization of the laser and 

design issues for landmark detection using this type of laser.  It demonstrates that high accurate localization can be obtained 

with this information. A full SLAM implementation using beacon and beacons and natural features is presented. Analysis 

of absolute and relative errors are also dicussed. The navigation algorithm is implemented in information form. This 

algorithm becomes more attractive that the standard Kalman filter for application where the external information is 

available from different sources and at different times [1]. 

This paper begins in Section 2 by describing the modelling aspects of the navigation loop and the extension to SLAM. The 

characterization of the sensor is presented in Section 3 and the information filter in Section 4. Finally Section 5 and 6 

present the experimental results and conclusions 

2 Navigation loop 
The navigation loop is based on encoders and range/ bearing information provided by a laser sensor. The models for the 

process and observation are non-linear. The encoders provide velocity and steering angle information that is used with a 

kinematic model of the vehicle to predict position and orientation. The prediction is updated with external range and 

bearing information provided by a laser sensor.  



 

Modelling Aspect 
A simple kinematic model is used for this experimentation. This model can be extended to consider other parameters such 

as wheel radius and slip angle that can have significant importance in other applications [3]. 

The vehicle position is represented in global coordinates as shown in Figure 1 . The steering control α is defined in vehicle 

coordinate frame. The laser sensor is located in the front of the vehicle and returns range and bearing related to objects at 

distances of up to 50 meters. High intensity reflection can be obtained by placing high reflectivity beacons in the area of 

operation. These landmarks are labelled as Bi(i=1..n) and measured with respect to the vehicle coordinates (xl,yl), that is 

( ) ( , , )z k r Iβ= , where r is the distance from the beacon to the laser, β is the sensor bearing measured with respect to the 

vehicle coordinate frame and I is the intensity information. 
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Figure 1 Vehicle coordinate system 

Considering that the vehicle is controlled through a demanded velocity vc and steering angle α the process model that 

predict the trajectory of the centre of the back axle is given by 
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The laser is located in the front of the vehicle. To facilitate the update stage, the kinematic model of the vehicle is designed 

to represent the trajectory of the centre of the laser. Based on Figure 1 and 2 , the translation of the centre of the back axle 

can be given 
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Being PL and PC the position of the laser and the centre of the back axle in global coordinates. The transformation is defined 

by the orientation angle, according to the following vectorial expression: 

( ) ( )( )cos ,sinTφ φ φ=
r  (3) 

The scalar representation is 
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Figure 2 Kinematics parameters 

Finally the full state representation can be written  

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( )

cos sin cos tan

sin cos sin tan

tan

c
c

L
c

L c

L c

v
v a b

Lx
v

y v a b
L

v

L

φ φ φ α

φ φ φ α
φ

α

 ⋅ − ⋅ ⋅ + ⋅ ⋅ 
   
   = ⋅ + ⋅ ⋅ − ⋅ ⋅   
      ⋅

  

&

&

&

 (5) 

The velocity is generated with an encoder located in the back left wheel. This velocity is translated to the centre of the axle 

with the following equation: 

( )
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Where for this car H = 0.75m, L=2.83 m, b = 0.5 and a = L + 0.95m. Finally the discrete model in global coordinates can be 

 approximated with the following set of equations: 
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where ∆T is the sampling time, that in our case is not constant. The process can then be written as a nonlinear equation  
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where X(k-1) and u(k-1) are the estimate and input at time k-1 and ( 1) ( 1)fk and kµ ω− −  are process noises. The process 

noise is mainly due to measurements error in the velocity and steering input information. The model for ( )u kω  is given by: 

[ ] ( 1)( ) ( , ) ( )u u kk f X u kω µ− = ∇ ⋅    (9) 
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The equation that relates the observation with the states is 
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where z and [ ], ,x y φ  are the observation and state values respectively, and ( ),i ix y  are the positions of the beacons or 

natural landmarks.

 

The observation equation can be expressed in short form as 

( ) ( ( )) ( )z k h x k kη= +  (11) 

with 
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The noises ( )kµ and ( )kη are assumed to be Gaussian, temporally uncorrelated and zero mean, that is 

[ ( )] [ ( )] 0E k E kµ η= =  (13) 

with corresponding covariance 

, ,( ) ( ) ( ), ( ) ( ) ( )T T
ij ij rE i j Q i E i j R iαν βµ µ δ η η δ   = =      (14) 

 

Simultaneous Localization and Map Building 
The localization and map building problem can also be approached with this combination of sensors. In this case the 

estimated location of the features or beacon becomes part of the state vector. The vehicle start at an unknown position with 

a given uncertainty and obtain measurements of the environment relative to its position. This information is used to 

incrementally build and maintain a navigation map and localize with respect to this map. 

The state vector is now given by: 
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where xv and xL are the states of the vehicle and actual landmarks. The landmarks can be natural features of special 

designed beacon located at unknown location. The dynamic model of the extended system that considers the new states can 

now be written: 
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It can be seen that the dynamic of the states xL is invariant since the landmarks are assumed to be static.  

Then the Jacobian matrix for the extended system becomes 
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The observations obtained with a range and bearing device are relative to the vehicle position. The observation equation is a 

function of the state of the vehicle and the states representing the position of the landmark: 
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where (x,y) is the position of the vehicle, (xi,yi) the position of the landmark numbered  i  and Φ the orientation of the car.  

Then the Jacobian matrix of the vector (ri,αi) respect to the variables (x,y, Φ,xi,yi) can be evaluated using: 
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with 
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These equations can be used to build and maintain a navigation map of the environment and to track the position of the 
vehicle.  

 

3 Range/Bearing/Intensity laser information 
This section presents the description of the laser and the beacon design aspects. The laser used in this experiment is the 

LMS200 model manufactured by SICK. It can return up to 361 range values spaced 0.5 degrees. The current version returns 

intensity information with eight different levels of magnitude. This information is used to detect beacons. The laser returns 

intensity information only from surfaces with high reflectivity. This information is extremely reliable and becomes of 

fundamental importance for navigation purposes.  

The beacon design is of fundamental importance for the successful operation of the system. In a given area of operation, the 

accuracy of the navigation system will be a function of the size, shape and type of material of the reflector. In order to 

optimally design the reflector it is essential to characterize the laser beam. A set of experiments was designed to obtain the 

laser parameters. A retro reflective tape (1.5x15cm) was radially moved at a constant distance R in steps of 5mm 

perpendicular to the laser beam. The Intensity output of the scanner was recorder for different radius. The results 

corresponding to two different radius are shown in figures 3 and 4. 
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Figure 3. Intensity at 5m, beam∅≈30mm, shadow 5 mm ( 5mm reflector)  
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Figure 4. Intensity at 10m, beam∅≈50mm, shadow 30 mm. ( 5mm reflector)  

With this information the angular resolution of the scanner as well as the opening angle of the beam was evaluated. The 

characterization of the laser obtained is shown in Figure 5. The beam angle becomes approximately 0.2 degrees. This 

determines the minimum area of a beacon that will be able to return maximum intensity at a given distance. 

In our experimentation we used standard diamond grade reflective tape. It was determined that the laser was able to detect 

beacons at distances of over 35 meters using reflectors with an area of 900 cm2.  

The size and shape of the beacon also becomes important when high accuracy is required. One of the problem is that at 

short ranges the landmarks will be detected at different bearing angles.  

 

 

 

Figure 5 Laser Characteristics 

This problem is shown in Figure 6 for a flat and cylindrical reflector. It can be seen that depending of the orientation and 

position of the vehicle the same beacon will be detected a different locations. The beacon shape is also of importance to be 

able to see the landmarks form different vehicle orientations. The cylinder shape shown in Figure 6 becomes very attractive 

for visibility purposes but it can generate different range and bearing returns depending on the position of the vehicle. 

These problems make the observation of the position of landmarks less accurately. Finally the “V” shape with an angle of 

40 degrees provided the best results as trade-off between visibility and position determination. For each application the 

final selection of the shape and size of the landmarks will depend on the number of landmarks, the required accuracy and 

the area of operations in relation to the characteristic of the laser. 

 

 

 



 

 

 

 

 

Figure 6 Different type of Beacons 

 

This section presented the main characteristics of the laser scanner and addressed the beacon design problem. This 

information is essential to evaluate the maximum accuracy that can be obtained with this navigation system. 

4 Information Filter 
In this work we used the information Filter, also known as inverse covariance filter [1], to implement the navigation 

algorithm. 

The information filter is a Kalman filter that expresses the optimal estimate in terms of the inverse of the covariance matrix  

 )|()|( 1 jiji −= PY  (21) 

and the information state vector 

 )|()|()|( 1 jijiji xPy −= . (22) 

Consider a linear system represented by 

 ( ) ( ) ( 1) ( )k k k kω= − +x F x , (23) 

where )(kx  is the state vector at time k, )(kF  is the state transition matrix and ( )kω  is a white process noise sequence with 

[ ( ) ( )] ( )T
iji j iω ω δ=E Q . The observation is modelled as 

 ( ) ( ) ( ) ( )k k k kη= +z H x , (24) 

where )(kz  is the observation vector, )(kH  is the observation model and ( )kη  is a white observation (measurement) noise 

sequence with [ ( ) ( )] ( )T
iji j iη η δ=E R . 

The information filter can be written as: 

 )()1|()|( kkkkk iyy +−=  (25) 

 )()1|()|( kkkkk IYY +−= , (26) 

where 

 )()()()( 1 kkkk zRHi −=  (27) 

is the information state contribution from the observation )(kz  and  

 1( ) ( ) ( ) ( )Tk k k k−=I H R H  (28) 

is its associated information matrix. The predictions are given by: 
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and 

 [ ] 11 )()()1|1()()1|( −− +−−=− kkkkkkk T QFYFY . (30)  

The update stage has the following form: 
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where N is the total number external sensors. 

The information filter has several advantages over the covariance form of the Kalman filter. It allows for the initialisation 

of the filter for the cases where 1
0

−P  is singular. Furthermore, for multi-sensor systems, the computational requirement of 

the filter is less than those of the standard Kalman filter. The reason is that the information filter requires the inversion of 

the information matrix that is of the dimension of the state vector, while the standard form requires the inversion of the 

composite innovation covariance matrix which is of the dimension of the observation vector.  

Also, as shown by equations 25 and 26, the filter only requires additions at the estimation (update) stage. This property can 

be exploited for efficient data fusion for systems with multiple sources of information. This will be the case where more 

than one external sensor is available to update the dead reckoning information. In our case the benefit are obtained updating 

the states in a sequential manner with each landmark detected. 

 

Nonlinear Information Filter  
The prediction and observation models for the vehicle under investigation are non-linear. For such system, a nonlinear 

information filter can be used. This filter is equivalent to the Extended Kalman Filter and linearises the nonlinear model 

around the nominal state to obtain the best linearised estimates for the nonlinear system. Consider a nonlinear system 

represented by 

 ( ) [ , ( 1)] ( )k k k kω= − +x f x  (33) 

with the observation model 

 ( ) [ , ( )] ( )k k k kη= +z h x . (34) 

The information contribution from an observation for this case is again obtained from equations 27 and 28, substituting 

 )]|(,[)( kkkk xhH x∇=  (35) 

and replacing z by 

 ( ))1|()]1|(,[)]1|(,[ −−∇−−−=′ kkkkkkkk xxhxhzz x  (36) 

where xh∇  is the Jacobian of h with respect to x.  

The nonlinear form of the information filter is identical to its linear form. However, for the calculation of the partial 

information state vector )(kii  and its associated information matrix )(kiI , equations 35 and 36 must be used. The 

prediction equation 29 is replaced by 



 

 )]1|1(,[)1|()1|( −−−=− kkkkkkk xfYy . (37) 

and the inverse covariance is updated with: 

[ ] 11( | 1) ( ) ( 1| 1) ( ) ( )T
x xk k f k k k f k k

−−− = ∇ − − ∇ +Y Y Q  (38) 

5 Results 
The navigation system was tested with a utility vehicle retrofitted with the sensors described. The utility car used for the 

experiment is shown in Figure 7. The laser and the GPS antenna are mounted in front of the vehicle.  A map of the testing 

site (landmarks positions) and a typical car trajectory is shown in Figure 8. The vehicle was driven at speed of up to 4 

m/sec. The experimental runs were performed in the top level of the car park building of the university campus. This testing 

site was chosen to maximize the number of satellite in view. A Kinematic Glonass/GPS system of 1 cm accuracy was used 

to generate ground truth information. The “stars” in the map represent potential natural landmarks and the “circles” are the 

artificial reflective beacons. Although this environment is very rich with respect to the number of natural landmarks, the 

data association becomes very difficult since most of the landmarks are very close together. Under a small position error the 

navigation algorithm will not be able to associate the extracted features correctly. The inclusion of beacons becomes 

equivalent to the introduction of a different type of landmark that is validated at the sensor level. This will make the data 

association of the natural landmark possible with the potential of a significant reduction of the localization error. 

 

 

 

 

 

Figure 7. Utility car used for the experiments. 
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 Figure 8 Landmark Positions and a typical trajectory ( Latitude and Longitude in meters ) 

Figure 9 shows a typical laser frame with the vehicle positioned at (0,0). The lines indicate high intensity reflection and 

coincide with the reflective beacons. 
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 Figure 9 A typical laser frame 

 



 

The data association is then performed considering the a-priori estimates and uncertainties in landmarks positions and the 

covariance of vehicle position and orientation. 

Navigation using beacon at known locations 
The first set of results corresponds to the localization algorithms using the reflective beacons at known locations. The final 

trajectory with the beacons used is presented in Figure 10. 
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Figure 10. Final estimation using artificial landmarks 

 

Figure 11 presents the 95 % confidence bounds of the estimated position of the vehicle, continuous line, with the true error, 

dotted line. It can be seen that most of the errors are bounded by the 95 % confidence bounds estimated by the filter. It is 

also important to note that the localizer is able to estimate the position of the vehicle with and error of approximate 6 

centimetres. This is a very important achievement considering the systematic errors present in the surveying and detection 

of the landmarks and vehicle model errors.  

A better representation of the uncertainty in estimation process can be obtained considering the complete covariance sub-

matrix  Pxy. Figure 12 presents the uncertainty in x and y considering the off diagonal terms of Pxy. The 2-D standard 

deviation errors are presented with the ground truth provided by the GPS position information. It can be noted that the error 

region reduces abruptly when the number of observations increase, coordinate (-8.4,-1), that is increasing the number of 

beacons used in the update stage. This plot also presents the evolution of the magnitude of the uncertainty regions when no 

observations are obtained.  This is due to the cumulative effects of the model uncertainty.  



 

Finally, a subset of the trajectory presented in Figure 13  when the vehicle is turning, coordinate (-11,-33). At this moment 

the model is expected to have some systematic errors due to slip and steering nonlinearities. It can be seen that a strong 

correction of few centimetres is performed by the filter in the update stage. This can be reduced using a larger number of 

beacons or with the addition of artificial landmarks as will be shown later. 
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Figure 11 Standard deviation with beacons  
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Figure 12, Position estimates and variances  
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Figure 13 Enhanced Trajectory. 

 

Navigation using SLAM with artificial beacons 
 

The second experimental results correspond to SLAM using only beacons. In this case it is not necessary to survey the 

position of the beacons. This information is obtained while the vehicle navigates. The system builds a map of the 

environment and localize itself. The accuracy of this map is determined by the initial uncertainty of the vehicle and the 

quality of the combination of dead reckoning and external sensors. In this experimental results an initial uncertain of 10 cm 

in coordinates x and y was assumed. Figure 14 shows the initial part of the experimental run with only few beacons 

detected. The actual trajectory is plotted as a continuous line while the total GPS trajectory is drawn as a dotted line. Figure 

15  presents the absolute error and the predicted standard deviation ( 2 σ bounds, 95 % confidence bounds ). These plots 

show that the bounds are consistent with the actual error. It is also important to remark that the uncertainty in position does 

not reduce below the initial uncertainty. This is expected since the laser information is obtained relative to the vehicle 

position. The only way the uncertainty can be reduced is by incorporating additional information that is not correlated to the 

vehicle position, such as GPS position information or recognizing a beacon with known position. 



 

The laser range innovation sequence can be seen in Figure 16 . It remains white and validates the assumed statistic for the 

model and sensors. The landmark covariance estimation is shown in Figure 17 . This figure presents the variance of 

position x and y and the estimated uncertainty of a selected group of landmarks. The ones with oscillatory behaviour 

correspond to the uncertainty of the vehicle. This is expected since no external absolute information is incorporated by the 

filter. The original uncertainty of a new landmark will be a function of the actual vehicle uncertainty and sensor noise. It 

can be seen that the landmark once created are started with different initial covariances.  This value is a function of the 

current vehicle uncertainty and the quality of the observation. It then decrease with time to a value that will not be smaller 

that the initial uncertainty of the vehicle. It can also be appreciated from this plot that the due to the correlation of the map 

all landmarks are being updated all the time.  

Finally Figure 18 shows that since we are still using the same number of beacons,  there is no improvement with respect to 

the smoothness of the updates when compared to the absolute navigation algorithm. There is a still a strong correction due 

to the failure of the vehicle’s model, coordinate (-11,-33).  
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Figure 14. Initial part of the trajectory using SLAM with beacons 
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Figure 15 Absolute position error and standard deviation. 
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Figure 16 Innovation sequence SLAM with beacons 
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Figure 17 Estimated deviation of position and beacons 
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Figure 18 Enhanced Trajectory 

 



 

Navigation using SLAM with Natural Features 
 

The final experimental results correspond to SLAM using all the features available in the environment. In this case it is not 

required to modify the infrastructure of the environment with the addition of beacons. The most relevant navigation features 

are obtained while the vehicle navigates. The vehicle builds a navigation map of the environment, maintains it and localizes 

itself. The accuracy of this map is determined by the initial uncertainty of the vehicle and the quality of the combination of 

dead reckoning and external sensors installed in the vehicle and frequency of external observations. In this experimental 

results an initial uncertain of 10 cm in coordinates x and y was also assumed. Figure 19 shows the initial part of the 

experimental run while the system is still incorporating new landmarks. The actual trajectory is drawn with a continuous 

line while the total GPS trajectory is plot as a dotted line. Figure 20 presents the absolute error with the predicted standard 

deviation ( 2 σ bounds, 95 % confidence bounds ). These plots show that the bounds obtained using all landmarks are 

consistent with the actual errors. It is also important to remark that the uncertainty in position become significantly smaller 

than the SLAM with beacons only. This is due to a larger number of landmarks that incorporate more information to the 

filter. The uncertainty does not become smaller than the initial uncertain. This is expected since the laser information is 

obtained relative to the vehicle position. 

The laser range innovation sequence can be seen in Figure 21 . It remains white and validates the assumed statistic for the 

model and sensors. The landmark identification covariance is shown in Figure 22 . This figure presents the variance of 

position x and y with the uncertainty of some selected landmarks. The ones with oscillatory behaviour correspond to the 

uncertainty of the vehicle. The landmarks are originally incorporated with an initial uncertainty function of vehicle and 

sensor covariances. The positions are then updated and its uncertainties are reduced as shown in the Figure. It can also be 

appreciated from this plot that the due to the correlation between landmarks and landmarks and vehicle’s states, the 

landmark are being updated all the time even if they are not being observed at the present time.  

Finally Figure 23 shows that since we are using a larger number of features there is a considerable improvement with 

respect to the smoothness of the updates. This trajectory can be compared to Figures 13 and 18  where a much smaller 

number of landmarks are being used. This can be important for vehicle control purposes since less demand will be imposed 

on the control and actuators. 
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Figure 19. Initial part of the trajectory using SLAM with natural features and beacons 
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Figure  20 Absolute position error and standard deviation. 
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Figure 21 Innovation sequence SLAM with natural features 
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Figure 22 Estimated deviation of position and selected features 
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Figure 23 Enhanced Trajectory 

 

 

 

 

 

 

 

 

 

 

 



 

6 Conclusion 
This work presented the implementation of different types of high accuracy navigation algorithms for outdoor and indoor 

applications. A characterization of a range/bearing/intensity laser is also presented. This task is essential to design beacons 

for a particular navigation environments.  The modelling aspect and the design of navigation algorithms are presented with 

an implementation based on the Information Filter. This approach becomes more attractive than the standard Kalman filter 

form for the case where a large number of observation are present. Sequential processing of the laser landmark information 

becomes much more efficient since it does not require the re-evaluation of the Kalman gain matrix.  

The modelling aspect has also been extended to consider Simultaneous Localization and Map building (SLAM). A full 

implementation of SLAM using beacons is also presented. This is an important contribution since it does not require any 

surveying of the beacons. The actual results have shown that the algorithm can deliver an accuracy in accordance to the 

initial uncertainty of the vehicle. It is important to remark that the maps obtained are relative to the initial position and 

orientation of the vehicle. In many application this will be all that is needed to accomplish a certain task. In case the 

absolute position is required to use external information such as GPS, then the uncertainty needs to be incorporated as 

shown in these two examples. It was also demonstrated that the algorithm successful build and maintain a map for long 

runs. This experimental results presented a 3 km run and the algorithm remains stable. In fact after revisiting the old 

landmarks the problem transform to the standard navigation algorithm with known beacon position. 

Finally SLAM considering all natural features is presented. It is demonstrated that it is not always necessary to use 

specially designed beacon for navigation purposes. In fact in this case the only requirement for the algorithm was the initial 

position and uncertainty of the vehicle. With only this information the algorithm was able to estimate the position of the 

vehicle with cm accuracy. It is important to remarks that although in this case the beacons were not required, they can be of 

fundamental importance for the data association problem in cases were the distance between landmarks is smaller than the 

position error build-up that will eventually appear when exploring new areas. This will always be a function of the 

particular application.  

Although the Information filter implementation presented in this paper is efficient for the navigation problem it may be 

computationally expensive for the SLAM in the case where the number of landmarks become large. We are currently 

investigating more efficient implementations of this algorithm taking into consideration the sparseness of the matrix 

involved in SLAM. 
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