
Simultaneous Localization and
Mapping

2002 Summer School

Eduardo Nebot
Australian Centre for Field Robotics
The University of Sydney NSW 2006

Australia
nebot@acfr.usyd.edu.au

http://acfr.usyd.edu.au/homepages/academic/enebot/

July 31, 2002

Version 0.9

Navigation System Design (KC-4) 1

1 Simultaneous Localisation and Mapping (SLAM)

Reliable localization is an essential component of any autonomous vehicle system. The
basic navigation loop is based on dead reckoning sensors that predict high frequency
vehicle manoeuvres and low frequency absolute sensors that bound positioning errors. The
problem of localization given a map of the environment or estimating the map knowing
the vehicle position has been addressed and solved using a number of different approaches.
Section 3 presents a Kalman filter technique to estimate the position of the vehicle based
on the known position of artificial landmarks. Although this method can be made very
reliable is has the drawback that requires the modification of the environment with the
addition special infrastructure. In addition the location of these infrastructure need to be
surveyed.

A related problem is when both, the map and the vehicle position are not known. In this
case the vehicle start in an unknown location in an unknown environment and proceed
to incrementally build a navigation map of the environment while simultaneously use
this map to update its location. In this problem, vehicle and map estimates are highly
correlated and cannot be obtained independently of one another. This problem is usu-
ally known as Simultaneous Localization and Map Building (SLAM) and was originally
introduced [7]. During the past few years significant progress has been made towards the
solution of the SLAM problem [3] [5] [2] [1] [6]

Kalman filter methods can also be extended to perform simultaneous localization and map
building. There have been several applications of this technology in a number of different
environments, such as indoors, underwater and outdoors. One of the main problems with
the SLAM algorithm has been the computational requirements. Although the algorithm
is originally of O(N3) the complexity of the SLAM algorithm can be reduced to O(N2),
N being the number of landmarks in the map. For long duration missions the number of
landmarks will increase and eventually computer resources will not be sufficient to update
the map in real time. This N2 scaling problem arises because each landmark is correlated
to all other landmarks. The correlation appears since the observation of a new landmark is
obtained with a sensor mounted on the mobile robot and thus the landmark location error
will be correlated with the error in the vehicle location and the errors in other landmarks
of the map. This correlation is of fundamental importance for the long-term convergence
of the algorithm and needs to be maintained for the full duration of the mission. This
section presents an introduction to the SLAM problem, description of the computation
complexity and different approaches that makes possible the implementation of SLAM in
real time in very large environments.

Navigation System Design (KC-4) 2

1.1 Fundamentals of SLAM

The SLAM algorithm address the problem of a vehicle with a known kinematic model,
starting at an unknown position, moving through an unknown environment populated
with artificial or natural features. The objective of SLAM is then to localize the vehicle
and at the same time build an incremental navigation map with the observed features. The
vehicle is equipped with a sensor capable of taking measurement of the relative location
of the feature and the vehicle itself. This scenario is shown if Figure 1. To facilitate
the introduction of the SLAM equations a linear model for the vehicle and observation is
used.

Figure 1: A vehicle taking relative measurements to environmental landmarks

Navigation System Design (KC-4) 3

1.1.1 Process Model

The state of the system consist of the position and orientation of the vehicle augmented
with the position of the landmarks. Assuming that the state of the vehicle is given by
xv(k) the motion of the vehicle through the environment can be modeled by the following
equation:

xv(k + 1) = Fv(k)xv(k) + uv(k + 1)) + vv(k + 1) (1)

where Fv(k) is the state transition matrix, uv(k) a vector of control inputs, and vv(k)
a vector of temporally uncorrelated process noise errors with zero mean and covariance
Qv(k) [[4]] for further details). The location of the ith landmark is denoted pi. SLAM
considers that all landmarks are stationary. The “state transition equation” for the ith

landmark is
pi(k + 1) = pi(k) = pi , (2)

It can be seen that the model for the evolution of the landmarks does not have any
uncertainty. Assuming that N are actually validated and incorporated by the system
then the vector of all N landmarks is denoted

p =
[

pT
1 . . . pT

N

]T
(3)

The augmented state vector containing both the state of the vehicle and the state of all
landmark locations is denoted

x(k) =
[

xT
v (k) pT

1 . . . pT
N

]T
. (4)

The augmented state transition model for the complete system may now be written as
xv(k + 1)

p1
...

pN

 =


Fv(k) 0 . . . 0

0 Ip1 . . . 0
...

...
. . . 0

0 0 0 IpN




xv(k)
p1
...

pN

 (5)

+


uv(k + 1)

0p1

...
0pN

 +


vv(k + 1)

0p1

...
0pN

 (6)

x(k + 1) = F(k)x(k) + u(k + 1) + v(k + 1) (7)

where Ipi
is the dim(pi)× dim(pi) identity matrix and 0pi

is the dim(pi) null vector.

As can be seen from Equation 5 the size of the matrices involved were augmented by

Navigation System Design (KC-4) 4

n ∗ N , being n the number of states required to represent a landmark and N the num-
ber of landmarks incorporated into the map. In a large environment this number will
tend to grow and eventually the computer resources will not be sufficient to process the
information from the external sensor in real time.

1.1.2 The Observation Model

The vehicle is equipped with a sensor that can obtain observations of the relative location
of landmarks with respect to the vehicle. Assuming the observation to be linear and
synchronous, the observation model for the ith landmark is written in the form

zi(k) = Hix(k) + wi(k) (8)

= Hpip−Hvxv(k) + wi(k) (9)

where wi(k) is a vector of temporally uncorrelated observation errors with zero mean and
variance Ri(k). The term Hi is the observation matrix and relates the output of the
sensor zi(k) to the state vector x(k) when observing the i(th) landmark. It is important
to note that the observation model for the ith landmark is written in the form

Hi = [−Hv ,0 · · ·0,Hpi ,0 · · ·0] (10)

This structure reflects the fact that the observations are “relative” between the vehicle
and the landmark, often in the form of relative location, or relative range and bearing
(see Section 4).

1.2 The Estimation Process

In the estimation-theoretic formulation of the SLAM problem, the Kalman filter is used
to provide estimates of vehicle and landmark location. We briefly summarise the notation
and main stages of this process The Kalman filter recursively computes estimates for a
state x(k) which is evolving according to the process model in Equation 5 and which
is being observed according to the observation model in Equation 8. The Kalman filter
computes an estimate which is equivalent to the conditional mean x̂(p|q) = E [x(p)|Zq]
(p ≥ q), where Zq is the sequence of observations taken up until time q. The error in the
estimate is denoted x̃(p|q) = x̂(p|q) − x(p). The Kalman filter also provides a recursive

estimate of the covariance P(p|q) = E
[
x̃(p|q)x̃(p|q)T |Zq

]
in the estimate x̂(p|q). The

Kalman filter algorithm now proceeds recursively in three stages:

• Prediction: Given that the models described in equations 5 and 8 hold, and that an
estimate x̂(k|k) of the state x(k) at time k together with an estimate of the covari-

Navigation System Design (KC-4) 5

ance P(k|k) exist, the algorithm first generates a prediction for the state estimate,
the observation (relative to the ith landmark) and the state estimate covariance at
time k + 1 according to

x̂(k + 1|k) = F(k)x̂(k|k) + u(k) (11)

ẑi(k + 1|k) = Hi(k)x̂(k + 1|k) (12)

P(k + 1|k) = F(k)P(k|k)FT (k) + Q(k), (13)

respectively.

• Observation: Following the prediction, an observation zi(k+1) of the ith landmark of
the true state x(k+1) is made according to Equation 8. Assuming correct landmark
association, an innovation is calculated as follows

νi(k + 1) = zi(k + 1)− ẑi(k + 1|k) (14)

together with an associated innovation covariance matrix given by

Si(k + 1) = Hi(k)P(k + 1|k)HT
i (k) + Ri(k + 1). (15)

• Update: The state estimate and corresponding state estimate covariance are then
updated according to:

x̂(k + 1|k + 1) = x̂(k + 1|k) + Wi(k + 1)νi(k + 1) (16)

P(k + 1|k + 1) = P(k + 1|k)−Wi(k + 1)S(k + 1)WT
i (k + 1) (17)

Where the gain matrix Wi(k + 1) is given by

Wi(k + 1) = P(k + 1|k)HT
i (k)S−1

i (k + 1) (18)

The update of the state estimate covariance matrix is of paramount importance to the
SLAM problem. Understanding the structure and evolution of the state covariance matrix
is the key component to this solution of the SLAM problem.

1.2.1 Example

Assume a vehicle moving in one dimension and observing relative range to a number
of landmarks. We would like to design a filter to track the position and velocity of
the vehicle. We can also assume that the position of the vehicle is known with some
uncertainty, although this is not relevant for this example. Since no additional absolute
information is available such as GPS, if one assume the vehicle is traveling at constant

Navigation System Design (KC-4) 6

velocity the estimation of uncertainty of its position will grow with time. In addition due
to initial error in position and velocity the difference between estimated and real position
will grow indefinite.[

pos(k + 1)
vel(k + 1)

]
=

[
1 ∆t
0 1

] [
pos(k)
vel(k)

]
+

[
0
1

]
v(k) (19)

In this example we can assume that two landmarks are already incorporate into the map.
The process model is then extended as follows:


pos(k + 1)
vel(k + 1)
p1(k + 1)
p2(k + 1)

 =


1 ∆t 0 0
0 1 0 0
0 0 1 0
0 0 0 1



pos(k)
vel(k)
p1(k)
p2(k)

 +


0
1
0
0

 v(k) (20)

Once a landmark is incorporated into the map it will remain as part of the state vector.
The full augmented system needs to be used each time a prediction or observation is made.
In future section we will see that optimizations are possible to reduce the computation
complexity of SLAM. On the other hand, the observation model will be a function of the
number of landmarks observed. In the case two landmarks are observed we have:

[
z1(k)
z2(k)

] [
1 0 −1 0
1 0 0 −1

] 
pos(k)
vel(k)
p1(k)
p2(k)

 +

[
1
1

]
w(k) (21)

In this example it was also assumed that both observation were taken with the same
sensor or with another sensor with similar noise characteristics.

1.3 Fundamentals results in SLAM

In this section section present three fundamental results in the solution of SLAM. For a
full demonstration of this results the readers are encouraged to see [1]

The state covariance matrix may be written in block form as

P(i|j) =

[
Pvv(i | j) Pvm(i | j)
Pmv(i | j) Pmm(i | j)),

]
where Pvv(i | j) is the error covariance matrix associated with the vehicle state estimate,
Pmm(i | j) is the map covariance matrix associated with the landmark state estimates,
and Pvm(i | j) is the cross-covariance matrix between vehicle and landmark states.

Navigation System Design (KC-4) 7

Theorem 1 The determinant of any sub-matrix of the map covariance matrix decreases
monotonically as successive observations are made.

The algorithm is initialised using a positive semi-definite (psd) state covariance matrix
P(0|0). The matrices Q and Ri are both psd, and consequently the matrices P(k + 1|k),
Si(k + 1),Wi(k + 1)Si(k + 1)WT

i (k + 1) and P(k + 1|k + 1) are all psd. From Equation
17, and for any landmark i,

detP(k + 1|k + 1) = det(P(k + 1|k)−Wi(k + 1)Si(k + 1)WT (k + 1))

≤ detP(k + 1|k) (22)

The determinant of the state covariance matrix is a measure of the volume of the un-
certainty ellipsoid associated with the state estimate. Equation 22 states that the total
uncertainty of the state estimate does not increase during an update.

Theorem 2 In the limit the landmark estimates become fully correlated

As the number of observations taken tends to infinity a lower limit on the map covariance
limit will be reached such that

lim
k→∞

[Pmm(k + 1 | k + 1)] = Pmm(k | k) (23)

Also the limit the determinant of the covariance matrix of a map containing more than
one landmark tends to zero.

lim
k→∞

[detPmm(k | k)] = 0 (24)

This result implies that the landmarks become progressively more correlated as successive
observations are made. In the limit then, given the exact location of one landmark the
location of all other landmarks can be deduced with absolute certainty and the map is
fully correlated.

Theorem 3 In the limit, the lower bound on the covariance matrix associated with any
single landmark estimate is determined only by the initial covariance in the vehicle esti-
mate P0v at the time of the first sighting of the first landmark.

When the process noise is not zero the two competing effects of loss of information con-
tent due to process noise and the increase in information content through observations,
determine the limiting covariance. It is important to note that the limit to the covariance
applies because all the landmarks are observed and initialised solely from the observations
made from the vehicle. The covariances of landmark estimates can not be further reduced

Navigation System Design (KC-4) 8

by making additional observations to previously unknown landmarks. However, incorpo-
ration of external information, for example using an observation is made to a landmark
whose location is available through external means such as GPS, will reduce the limiting
covariance.

In summary, the three theorems presented above describe, in full, the convergence prop-
erties of the map and its steady state behaviour. As the vehicle progresses through the
environment the total uncertainty of the estimates of landmark locations reduces mono-
tonically to the point where the map of relative locations is known with absolute precision.
In the limit, errors in the estimates of any pair of landmarks become fully correlated. This
means that given the exact location of any one landmark, the location of any other land-
mark in the map can also be determined with absolute certainty. As the map converges
in the above manner, the error in the absolute location estimate of every landmark (and
thus the whole map) reaches a lower bound determined only by the error that existed
when the first observation was made.

Thus a solution to the general SLAM problem exists and it is indeed possible to construct
a perfectly accurate map describing the relative location of landmarks and simultaneously
compute vehicle position estimates without any prior knowledge of landmark or vehicle
locations.

1.4 Non-linear Models

In general the models that predict the trajectory of the vehicle and the models that relates
the observation with the states are non-linear. The SLAM can still be formulated but
requires the linearization of these models. In this case the Jacobian of the process and
observation models are used to propagate the covariances. In this section we present a
more realistic model of a standard outdoor vehicle.

Assume a vehicle equipped with dead reckoning capabilities and an external sensor capable
of measuring relative distance between vehicle and the environment as shown in Figure
2. The steering control α, and the speed υc are used with the kinematic model to predict
the position of the vehicle. In this case the external sensor returns range and bearing
information to the different features Bi(i=1..n). This information is obtained with respect
to the vehicle coordinates (xl, yl), that is z(k) = (r, β) , where r is the distance from the
beacon to the range sensor, β is the sensor bearing measured with respect to the vehicle
coordinate frame.

Considering that the vehicle is controlled through a demanded velocity υc and steering
angle α the process model that predicts the trajectory of the centre of the back axle is
given by

Navigation System Design (KC-4) 9

Figure 2: Vehicle Coordinate System

 ẋc

ẏc

φ̇c

 =

 vc · cos (φ)
vc · sin (φ)
vc

L
· tan (α)

 + γ (25)

Where L is the distance between wheel axles as shown in Figure 3. To simplify the
equation in the update stage, the kinematic model of the vehicle is designed to represent
the trajectory of the centre of the laser. Based on Figure 2 and 3, the translation of the
centre of the back axle can be given

PL = PC + a · ~Tφ + b · ~T
φ+π/2

(26)

PL and PC are the position of the laser and the centre of the back axle in global coordinates
respectively. The transformation is defined by the orientation angle, according to the
following vectorial expression:

~Tφ = (cos (φ) , sin (φ)) (27)

Navigation System Design (KC-4) 10

Figure 3: Kinematics parameters

The scalar representation is

xL = xc + a · cos (φ) + b · cos (φ+ π/2)

yL = yc + a · sin (φ) + b · sin (φ+ π/2)

Finally the full state representation can be written ẋL

ẏL

φ̇L

 =

 vc · cos (φ)− vc

L
· (a · sin (φ) + b · cos (φ)) · tan (α)

vc · sin (φ) + vc

L
· (a · cos (φ)− b · sin (φ)) · tan (α)

vc

L
· tan (α)

 + γ (28)

The velocity, υc , is measured with an encoder located in the back left wheel. This velocity
is translated to the centre of the axle with the following equation:

vc=
νe(

1− tan (α) · H
L

) (29)

Where for this car H = 0.75m, L=2.83 m, b = 0.5 and a = L + 0.95m. Finally the discrete

Navigation System Design (KC-4) 11

model in global coordinates can be approximated with the following set of equations:

 x(k)
y(k)
φ(k)

 =



x(k − 1) + ∆T vc(k − 1) · cos (φ(k − 1))−
vc

L
· (a · sin (φ(k − 1)) + b · cos (φ(k − 1)))

· tan (α(k − 1))
y(k − 1) + ∆T vc(k − 1) · sin (φ(k − 1)) +

vc(k−1)
L

· (a · cos (φ(k − 1))− b · sin (φ(k − 1)))
· tan (α(k − 1))

vc(k−1)
L

· tan (α(k − 1))


+ γ (30)

where ∆t is the sampling time, that in this case is not constant.

The observation equation relating the vehicle states to the observations is

z = h (X, xi, yi) =

[
zi

r

zi
β

]
=

 √
(xi − xL)2 + (yi − yL)2

atan
(

(yi−yL)
(xi−xL)

)
− φL + π/2

 + γh (31)

where z is the observation vector, is the coordinates of the landmarks, xL , yL and φL are
the vehicle states defined at the external sensor location and γh the sensor noise.

The complete non-linear model can be expressed in general form as:

X (k + 1) = F (X (k) , u (k) + γu (k)) + γf (k)
z (k) = h (X (k)) + γh (k)

(32)

The effect of the input signal noise is approximated by a linear representation

F (X (k) , u (k) + γu (k)) + γf (k) ∼= F (X (k) , u (k)) + γ (k)
γ (k) = Ju · γu (k) + γf (k)
Ju = ∂F

∂u

∣∣
X=X(k),u=u(k)

(33)

The matrix noise characteristics are assumed zero mean and white:

E {γf (k)} = E {γu (k)} = E {γh (k)} = 0
E

{
γf (i) · γT

f (j)
}

= δi,j ·Qf (i)
E

{
γh (i) · γT

h (j)
}

= δi,j ·R (i)
E

{
γu (i) · γT

u (j)
}

= δi,j ·Qu (i)
E

{
γh (i) · γT (j)

}
= 0

δi,j =

{
0 i 6= j
1 i = j

E
{
γ (i) · γT (j)

}
= δi,j ·

(
Ju ·Qu (i) · JT

u +Qf (i)
)

= δi,j ·Q (i)

(34)

Navigation System Design (KC-4) 12

An Extended Kalman Filter (EKF) observer based on the process and output models
can be formulated in two stages: Prediction and Update stages. The Prediction stage is
required to obtain the predicted value of the states X and its error covariance P at time
k based on the information available up to time k − 1,

X (k + 1, k) = F (X (k, k) , u (k))
P (k + 1, k) = J · P (k, k) · JT +Q (k)

(35)

The update stage is function of the observation model and the covariances:

S (k + 1) = H · P (k + 1, k) ·HT (k + 1) +R (k + 1)
W (k + 1) = P (k + 1, k) ·HT (k + 1) · S−1 (k + 1)
ϑ (k + 1) = Z (k + 1)− h (X (k + 1, k))
X (k + 1, k + 1) = X (k + 1, k) +W (k + 1) · ϑ (k + 1)

P (k + 1, k + 1) = P (k + 1, k)−W (k + 1) · S (k + 1) ·W (k + 1)T

(36)

Where

J = J (k) =
∂F

∂X

∣∣∣∣
(X,u)=(X(k),u(k))

, H = H (k) =
∂h

∂X

∣∣∣∣
X=X(k)

(37)

are the Jacobian matrixes of the vectorial functions F (x, u) and h(x) respect to the state
X and R is the covariance matrix characterizing the noise in the observations.

Under the SLAM framework the system will detect new features at the beginning of the
mission and when exploring new areas. Once these features become reliable and stable
they are incorporated into the map becoming part of the state vector. The state vector
is then given by:

X =

[
XL

XI

]
XL = (xL, yL, φL)T ∈ R3

XI = (x1, y1, .., xN , yN)T ∈ R2N

(38)

where (x, y, φ)L and (x, y)i are the states of the vehicle and features incorporated into the
map respectively. Since this environment is consider to be static the dynamic model that
includes the new states becomes:

XL (k + 1) = f (XL (k)) + γ
XI (k + 1) = XI (k)

(39)

It is important to remarks that the landmarks are assumed to be static. Then the Jacobian

Navigation System Design (KC-4) 13

matrix for the extended system is

∂F
∂X

=

[
∂f

∂x̃L
∅

∅ I

]
=

[
J1 ∅
∅ I

]
J1 ∈ R3x3, ∅ ∈ R3xN , I ∈ R2Nx2N

(40)

The observations zr and zβ are obtained from a range and bearing sensor relative to the
vehicle position and orientation. The observation equation given in Equation 31 is a func-
tion of the states of the vehicle and the states representing the position of the landmark.
The Jacobian matrix of the vector h with respect to the variables (xL, yL, φL, xi, yi) can
be evaluated using:

∂h

∂X
=

[
∂zr

∂X
∂zβ

∂X

]
=

 ∂ri

∂(xL,yL,φL,{xj ,yj}j=1..N)
∂βi

∂(xL,yL,φL,{xj ,yj}j=1..N)

 (41)

This Jacobian will always have a large number of null elements since only a few landmarks
will be observed and validated at a given time. For example, when only one feature is
observed the Jacobian has the following form:[

∂zr

∂X
∂zβ

∂X

]
=

[
∆x
∆

∆y
∆

0 0 0 ... −∆x
∆

−∆y
∆

0 ... 0 0

−∆y
∆2

∆x
∆2 −1 0 0 ... ∆y

∆2 −∆x
∆2 0 ... 0 0

]
(42)

where ∆x = (xL − xi) , ∆y = (yL − yi) , ∆ =
√

(∆x)2 + (∆y)2

These models can then be used with a standard EKF algorithm to build and maintain a
navigation map of the environment and to track the position of the vehicle.

1.5 Optimization of SLAM

Under the SLAM framework the size of the state vector is equal to the number of the
vehicle states plus twice the number of landmarks, that is 2N+3 = M . This is valid when
working with point landmarks in 2 − D environments. In most SLAM applications the
number of vehicle states will be insignificant with respect to the number of landmarks.
The number of landmarks will grow with the area of operation making the standard filter
computation impracticable for on-line applications. In this section we present a series
of optimizations in the prediction and update stages that reduce the complexity of the
SLAM algorithm from O(M3) to O(M2). Then a compressed filter is presented to
reduce the real time computation requirement to O(2N2

a), being Na the landmarks in the
local area. This will also make the SLAM algorithm extremely efficient when the vehicle

Navigation System Design (KC-4) 14

remains navigation in this area since the computation complexity becomes independent
of the size of the global map. These algorithms do not make any approximations and the
results are exactly equivalent to a full SLAM implementation.

1.5.1 Standard Algorithm Optimization

Prediction Stage Considering the zeros in the Jacobian matrix of Equation 40 the
prediction Equation 35 can be written:

P+ = J · P · JT +Q =

[
J1 ∅
∅T I

]
·
[
P11 P12

P21 P22

]
·
[
JT

1 ∅T

∅ IT

]
+

[
QV ∅
∅ ∅2

]
J1 ∈ R3x3, ∅ ∈ R3x2N , I ∈ R2Nx2N

P11 ∈ R3x3, P12 ∈ R3x2N , P21 = P T
12, P22 ∈ R2Nx2N

(43)

The time sub-indexes are not used in this explanation for clarity of presentation. Per-
forming the matrix operations explicitly the following result is obtained:

J · P =

[
J1 ∅
∅T I

]
·
[
P11 P12

P21 P22

]
=

[
J1 · P11 J1 · P12

I · P21 I · P22

]
=

[
J1 · P11 J1 · P12

P21 P22

]

J · P · JT =

[
J1 · P11 J1 · P12

P21 P22

]
·
[
JT

1 ∅T

∅ I

]
=

[
J1 · P11 · JT

1 J1 · P12 · I
P21 · JT

1 P22 · I

]
=

[
J1 · P11 · JT

1 J1 · P12

(J1 · P12)
T P22

]
(44)

It can be proved that the evaluation of this matrix requires approximately only 9M
multiplications. In general, more than one prediction step is executed between 2 update
steps. This is due to the fact that the prediction stage is usually driven by high frequency
sensory information that acts as inputs to the dynamic model of the vehicle and needs to
be evaluated in order to control the vehicle. The low frequency external sensors report
the observation used in the estimation stage of the EKF. This information is processed at
much lower frequency. For example, the steering angle and wheel speed can be sampled
every 20 milliseconds but the laser frames can be obtained with a sample time of 200
milliseconds. In this case we have a ratio of approximately 10 prediction steps to one

Navigation System Design (KC-4) 15

update step. The compact form for n prediction steps without an update is

P (k + n, k) =

[
P11 (k + n, k) G1 · P12 (k, k)

(G1 · P12 (k, k))T P22 (k, k)

]
(45)

where

G1 = G1 (k, n) =
n−1∏
i=0

J1 (k + i) = J1 (k + n− 1) · · J1 (k) (46)

Update Stage Since only a few features associated with the state vector are observed
at a given time, the Jacobian matrix H will have a large number of zeros. When only one
feature is incorporated into the observation vector we have:

H = H (k) = ∂h
∂X

∣∣
X=X(k)

= [H1, ∅1, H2, ∅2] ∈ R2xM , M = (2N + 3)

H1 = ∂h
∂XL

∣∣∣
X=X(k)

= ∂h
∂(xL,yL,φL)

∣∣∣
X=X(k)

∈ R2x3

H2 = ∂h
∂Xi

∣∣∣
X=X(k)

= ∂h
∂(xi,yi)

∣∣∣
X=X(k)

∈ R2x2

∅1, ∅2 = nullmatrices
(

∂h
∂Xj

= ∅ ∀j 6= i
)
.

(47)

At a give time k the Kalman gain matrix W requires the evaluation of PHT

P ·HT = P1 ·HT
1 + P2 ·HT

2

P1 ∈ RMx3 , P2 ∈ RMx2

It can be proved that the evaluation will require 10M multiplications. Using the previous
result, the matrix S and W can be evaluated with a cost of approximately 20M

S = H · P ·HT +R ∈ R2∗2

W = P ·HT · S−1 ∈ RMx2 (48)

The cost of the state update operation is proportional to M . The main computational
requirement is in the evaluation of the covariance update where complexity is O(M2).

Experimental results The SLAM algorithm presented were tested an outdoor envi-
ronment with a standard utility vehicle retrofitted with dead reckoning sensors and a
laser range sensor as shown in Figure 4. In this application the most common relevant
feature in the environment were trees. The profiles of trees were extracted from the laser

Navigation System Design (KC-4) 16

information. A Kalman filter was also implemented to reduce the errors due to the dif-
ferent profiles obtained when observing the trunk of the trees from different locations.
The vehicle was started at a location with known uncertainty and driven in this area
for approximately 20 minutes. Figure 5 presents the vehicle trajectory and navigation
landmarks incorporated into the relative map. This run includes all the features in the
environment and the optimisation presented. The system built a map of the environment
and localized itself. The accuracy of this map is determined by the initial vehicle position
uncertainty and the quality of the combination of dead reckoning and external sensors.
In this experimental run an initial uncertainty in coordinates x and y was assumed. Fig-
ure 6 presents the estimated error of the vehicle position and selected landmarks. The
states corresponding to the vehicle presents oscillatory behaviour displaying the maxi-
mum deviation farther from the initial position. This result is expected since there is no
absolute information incorporated into the process. The only way this uncertainty can be
reduced is by incorporating additional information not correlated to the vehicle position,
such as GPS position information or recognizing a beacon located at a known position.
It is also appreciated that the covariances of all the landmarks are decreasing with time.
This means that the map is learned with more accuracy while the vehicle navigates. The
theoretical limit uncertainty in the case of no additional absolute information will be the
original uncertainty vehicle location. Figure 7 presents the final estimation of the land-
marks in the map. It can be seen that after 20 minutes the estimated error of all the
landmarks are below 60 cm.

Figure 4: Utility car used for the experiments. The vehicle is equipped with a Sick laser
range and bearing sensor, linear variable differential transformer sensor for the steering
and back wheel velocity encoders.

Navigation System Design (KC-4) 17

Figure 5: Vehicle trajectory and landmarks. The ’*’ shows the estimated position of
objects that qualified as landmarks for the navigation system. The dots are laser returns
that are not stable enough to qualify as landmarks. The solid line shows the 20 minutes
vehicle trajectory estimation using full SLAM.

Figure 6: The History of selected state’s estimated errors. The vehicle states shows
oscillatory behaviour with error magnitude that is decreasing with time due to the learning
of the environment. The landmarks always present a exponential decreasing estimated
error with a limit of the initial uncertainty of the vehicle position.

Navigation System Design (KC-4) 18

Figure 7: 11 Final estimated error of all states. For each state the final estimated error
is presented. The maximum error is approximately 60 cm

1.5.2 Compressed Filter

In this section we demonstrate that it is not necessary to perform a full SLAM update when
working in a local area. This is a fundamental result because it reduces the computational
requirement of the SLAM algorithm to the order of the number of features in the vicinity
of the vehicle; independent of the size of the global map. A common scenario is to
have a mobile robot moving in an area and observing features within this area. This
situation is shown in Figure 8 where the vehicle is operating in a local area A. The
rest of the map is part of the global area B. This approach will also present significant
advantages when the vehicle navigates for long periods of time in a local area or when the
external information is available at high rate. Although high frequency external sensors
are desirable to reduce position error growth, they also introduce a high computational
cost in the SLAM algorithm. For example a laser sensor can return 2-D information at
frequencies of 4 to 30 Hz. To incorporate this information using the full SLAM algorithm
will require to update M states at 30 Hz. In this work we show that while working in
a local area observing local landmarks we can preserve all the information processing a
SLAM algorithm of the order of the number of landmarks in the local area. When the
vehicle departs from this area, the information acquired can be propagated to the global
landmarks without loss of information. This will also allow incorporating high frequency
external information with very low computational cost. Another important implication

Navigation System Design (KC-4) 19

Figure 8: Local and Global areas

is that the global map will not be required to update sequentially at the same rate of the
local map.

Update step Considered the states divided in two groups:

X =

[
XA

XB

]
, XA ∈ R2NA+3, XB ∈ R2NB ,

X ∈ R2N−3, N = NA +NB

(49)

The states XA can be initially selected as all the states representing landmarks in an area
of a certain size surrounding the vehicle. The states representing the vehicle pose are
also included in XA. Assume that for a period of time the observations obtained are only
related with the states XA and do not involve states of XB, that is

h (X) = h (XA) (50)

Then at a given time k

H =
∂h

∂X

∣∣∣∣
X=X(k)

=
∂h

∂ (XA, XB)

∣∣∣∣
X=X(k)

=
[

∂h
∂XA

∂h
∂XB

]
=

[
Ha 0

]
(51)

Considering the zeros of the matrix H the Kalman gain matrix W is evaluated as follows

Navigation System Design (KC-4) 20

P =

[
Paa Pab

Pba Pbb

]
P ·HT =

[
Paa ·HT

a

Pba ·HT
a

]
H · P ·HT = Ha · Paa ·HT

a S = Ha · Paa ·HT
a +R

W = P ·HT · S−1 =

[
Paa ·HT

a · S−1

Pba ·HT
a · S−1

]
=

[
Wa

Wb

] (52)

From these equations it is possible to see that

1. The Jacobian matrix Ha has no dependence on the states XB.

2. The innovation covariance matrix S and Kalman gain Wa are function of Paa and
Ha. They do not have any dependence on Pbb, Pab, Pba and Xb.

The update term dP of the covariance matrix can then be evaluated

dP = W · S ·W T =

[
Paa · κ · Paa ξ · Pab

(ξ · Pab)
T Pba · κ · Pab

]
(53)

with κ = HT
a ·S−1 ·Ha and ξ = Paa ·κ. In the previous demonstration the time subindexes

were neglected for clarity of the presentation. These indexes are now incorporated to
present the recursive update equations. The covariance matrix after one update is

P (k + 1, k + 1) = P (k + 1, k)− dP (k + 1, k)

Paa(k + 1, k + 1) = Paa(k + 1, k)− Paa(k + 1, k) · κ (k) · Paa(k + 1, k)

Pab(k + 1, k + 1) = Pab(k + 1, k)− ξ(k) · P T
ab(k + 1, k)

= (I − ξ(k)) · Pab(k + 1, k)

Pbb(k + 1, k + 1) = Pbb(k + 1, k)− Pba(k + 1, k) · κ (k) · Pab(k + 1, k)

(54)

And the covariance variation after t consecutive updates:

Pab(k + t, k + t) = Φ(k + t− 1) · Pab(k, k)
Pbb(k + t, k + t) = Pbb(k, k)− Pba(k, k) · ψ (k − 1) · Pab(k, k)

(55)

with

Navigation System Design (KC-4) 21

Φ(k + t) = (I − ξ(k + t)) · (I − ξ(k + t− 1)) · · (I − ξ(k)) =
k+t∏
i=k

(I − ξ(i))

ψ(k + t) =
k+t∑
i=k

(
ΦT (i− 1) · κ(i) · Φ(i− 1)

)
Φ(k − 1) = I, ψ(k − 1) = 0

(56)

The evaluation of the matrices Φ(k) , ψ(k) can be done recursive according to:

Φ(k + t) = (I − ξ(k + t)) · Φ(k + t− 1)
ψ(k + t) = ψ(k + t− 1) + ΦT (k + t− 1) · κ(k + t) · Φ(k + t− 1)

(57)

with Φ(k), ψ(k), κ(k), ξ(k) ∈ R2Na×2Na. During long term navigation missions, the num-
ber of states in Xa will be in general much smaller than the total number of states in
the global map, that is Na << Nb < M . The matrices ξ(k) and κ(k) are sparse and the
calculation of Φ(k) and Ψ(k) has complexity O(N2

a). It is noteworthy that Xb, Pab, Pba

and Pbb are not needed when the vehicle is navigating in a local region ’looking’ only at
the states Xa. It is only required when the vehicle enters a new region. The evaluation
of Xb, Pbb, Pab and Pba can then be done in one iteration with full SLAM computational
cost using the compressed expressions. The estimates Xb can be updated after t update
steps using

Xb(k + t, k + t) = Xb(k + t, k)− Pba(k, k) · θ(k + t) (58)

with θ(k + t) =
k+t−1∑

i=k

ΦT (i− 1) ·HT
a (i) · S−1(i) · ϑ(i) , m the number of observations, in

this case range and bearing, θ(k) ∈ R2Na×m, Z(k) ∈ Rm,Φ(k) ∈ R2Na×2Na, Ha(k) ∈
Rm×2Na and S(k) ∈ Rm×m. Similarly, since Ha is a sparse matrix, the evaluation cost of
the matrix θ is proportional to Na. The derivation of these equations is presented in [2]

Extended Kalman Filter formulation for the compressed filter In order to main-
tain the information gathered in a local area it is necessary to extend the EKF formulation
presented in Equations (35) and (36). The following equations must be added in the pre-
diction and update stage of the filter to be able to propagate the information to the global

Navigation System Design (KC-4) 22

map once a full update is required:

Predictionstep


Φ (k) = Jaa (k, k − 1) · Φ (k − 1)

ψ (k) = ψ (k − 1)
ψ (0) = I
Φ (0) = 0

Updatestep

{
Φ (k) = (I − ξ(k)) · Φ (k − 1)

ψ (k) = ψ (k) + ΦT (k − 1) · κ(k) · Φ(k − 1)

(59)

When a full update is required the global covariance matrix P and state X is updated
with equations (55) and (58) respectively. At this time the matrices Φ and Ψ are also
re-set to the initial values of time 0, since the next observations will be function of a given
set of landmarks.

Map Management It has been shown that while the vehicle operates in a local area
all the information gathered can be maintained with a cost complexity proportional to
the number of landmarks in this area. The next problem to address is the selection of
local areas. One convenient approach consists of dividing the global map into rectangular
regions with size at least equal to the range of the external sensor. The map manage-
ment method is presented in Figure 9 . When the vehicle navigates in the region r the
compressed filter includes in the group XA the vehicle states and all the states related to
landmarks that belong to region r and its eight neighboring regions. This implies that
the local states belong to 9 regions, each of size of the range of the external sensor. The
vehicle will be able to navigate inside this region using the compressed filter. A full up-
date will only be required when the vehicle leaves the central region r. Every time the
vehicle moves to a new region, the active state group XA, changes to those states that
belong to the new region r and its adjacent regions. The active group always includes
the vehicle states. In addition to the swapping of the XA states, a global update is also
required at full SLAM algorithm cost. Each region has a list of landmarks that are known
to be within its boundaries. Each time a new landmark is detected the region that owns
it appends an index of the landmark definition to the list of owned landmarks. It is not
critical if the landmark belongs to this region or a close connected region. In case of strong
updates, where the estimated position of the landmarks changes significantly, the owners
of those landmarks can also be changed. An hysteresis region is included bounding the
local area r to avoid multiple map switching when the vehicle navigates in areas close
to the boundaries between the region r and surrounding areas. If the side length of the
regions are smaller that the range of the external sensor, or if the hysteresis region is
made too large, there is a chance of observing landmarks outside the defined local area.
This observation will be discarded since they cannot be associated with any local land-
marks. In such case the resulting filter will not be optimal since this information is not
incorporated into the estimates. Although these marginal landmarks will not incorporate

Navigation System Design (KC-4) 23

Figure 9: Map Management for the compressed Algorithm. The local area is composed
of nine squares of length approximate of the range of the sensor. The vehicle is always
within the central region of inside the threshold area.

significant information since they are far from the vehicle, this situation can be easily
avoided with appropriate selection of the size of the regions and hysteresis band. Figure 9
presents an example of the application of this approach. The vehicle is navigating in the
central region r and if it never leaves this region the filter will maintain its position and
the local map with a cost of a SLAM of the number of features in the local area formed
by the 9 neighbour regions. A full SLAM update is only required when the vehicle leaves
the region.

Computational Cost The total computational requirement for this algorithm is of
O(N2

a) and the cost of the update when the vehicle leaves the local area is of O(NaN
2
b).

Provided that the vehicle remains for a period of time in a given area, the computational
saving will be considerable. This has important implications since in many applications
it will allow the exact implementation of SLAM in very large areas. This will be possible
with the appropriate selection of local areas. The system evaluates the location of the
vehicle and the landmark of the local map continuously at the cost of a local SLAM.
Although a full update is required at a transition, this update can be implemented as a
parallel task. The only states that need to be fully updated are the new states in the new
local area. A selective update can then be done only to those states while the full update

Navigation System Design (KC-4) 24

for the rest of the map runs as a background task with lower priority. These results are
important since it demonstrates that even in very large areas the computational limitation
of SLAM can be overcame with the compression algorithm and appropriate selection of
local areas.

Experimental Results The compressed algorithm was implemented using local regions
of 40x40 meters square. These regions are appropriate for the Sick laser range sensor
used in this experiment. Figure 10 shows part of the trajectory of the vehicle with
the local area composed of 9 squares surrounding the vehicle. To demonstrate that the
compressed algorithm maintains and propagates all the information obtained, the history
of the covariances of the landmarks were compared with the ones obtained with the
full SLAM algorithm. Figure 11 shows a time evolution of standard deviation of few
landmarks. The dotted line corresponds to the compressed filter and the solid line to the
full SLAM. It can be seen that the estimated error of some landmarks are not continuously
updated with the compressed filter. These landmarks are not in the local area. Once
the vehicle makes a transition the system updates all the landmark performing a full
SLAM update. At this time the landmarks outside the local area are updated in one
iteration and its estimated error become exactly equal to the full SLAM. This is clearly
shown in Figure 12 where at the full update time stamps both estimated covariances
become identical. Figure 13 shows the difference between full SLAM and compressed
filter estimated landmarks covariance. It can be seen that at the full update time stamps
the difference between the estimation using both algorithms becomes zero as demonstrated
before. This shows that while working in a local area it is possible to maintain all the
information gathered with a computational cost proportional to the number of landmarks
in the local area. This information can then be propagated to the rest of the landmarks
in the map without any loss of information.

1.5.3 Sub-Optimal SLAM

In this section we present a series of simplification that can further reduce the compu-
tationally complexity of SLAM. This sub-optimal approach reduces the computational
requirements by considering a subset of navigation landmarks present in the global map.
It is demonstrated that this approach is conservative and consistent, and can generate
close to optimal results when combined with the appropriate relative map representation.
Most of the computational requirements of the EKF are needed during the update process
of the error covariance matrix. Once an observation is being validated and associated to
a given landmark, the covariance error matrix of the states is updated according to

P = P −∆P
∆P = W · S ·W T (60)

Navigation System Design (KC-4) 25

Figure 10: Vehicle and local areas. This plot presents the estimated trajectory and navi-
gation landmark estimated position . It also shows the local region ’r’ with its surrounding
regions. The local states XA are the ones included in the nine regions shown enclosed by
a rectangle in the left button corner of the figure

The time subindexes are neglected when possible to simplify the equations. The state
vector can be divided in 2 groups, the Preserved ”P” and the Discarded ”D” states

X =

[
XP

XD

]
, XP ∈ RNP , XD ∈ RND , X ∈ RN , N = NP +ND (61)

With this partition it is possible to generate conservative estimates by updating the states
XD but not updating the covariance and cross-covariance matrices corresponding to this
sub-vector. The covariance matrix can then be written in the following form:

P =

[
PPP PPD

P T
DP PDD

]
, ∆P =

[
∆PPP ∆PPD

∆P T
DP ∆PDD

]
= W · S ·W T (62)

Conservative updates are obtained if the nominal update matrix ∆P is replaced by the
sub-optimal ∆P ∗

Navigation System Design (KC-4) 26

Figure 11: Landmark estimated position error for full Slam and compressed filter. The
solid line shows the estimated error provided by the full SLAM algorithm. This algorithm
updates all the landmarks with each observation. The dotted line shows the estimated
error provided by the compressed filter. The landmark that are not in the local area
are only updated when the vehicle leaves the local area. At this time a full updates is
performed and the estimated error becomes exactly equal to full SLAM

Navigation System Design (KC-4) 27

Figure 12: Landmark estimated position error for full Slam and compressed filter (en-
hanced). This plot presents an enhanced view of the instant when the compressed algo-
rithm performed a full update. A time ”165” the full slam (solid line) and the compressed
algorithm (solid lines with dots) report same estimated error as predicted.

Figure 13: Estimated error differences between full slam and compressed filter. The
estimated error difference between both algorithms becomes identically zero when the full
update is performed by the compressed algorithm.

Navigation System Design (KC-4) 28

∆P ∗ =

[
∆PPP ∆PPD

∆PDP ∅

]
= ∆P −

[
∅ ∅
∅ ∆PDD

]

P ∗ = P −∆P ∗ = P −∆P +

[
∅ ∅
∅ ∆PBB

]
It can be shown that this simplification generates consistent error covariance estimates.
Demonstration: The covariance error matrix P ∗(k + 1) can be rewritten as follows

P ∗(k + 1) = P (k)−∆P ∗ = P (k)−∆P + δ (63)

where

∆P ∗ =

[
∆PPP ∆PPD

∆PDP ∅

]
= ∆P − δ

∆P =

[
∆PPP ∆PPD

∆PDP ∆PDD

]
≥ 0 δ =

[
∅ ∅
∅ ∆PBB

]
≥ 0

(64)

The matrices ∆P and µ are positive semi-definite since:

∆P =

[
∆PPP ∆PPD

∆P T
DP ∆PDD

]
= W · S ·W T ≥ 0

∆PDD = WD · SD ·W T
D ≥ 0

(65)

As given in Equation 63, the total update is formed by the optimal update plus an
additional positive semi-definite noise matrix δ. The matrix δ will increase the covariance
uncertainty:

P ∗ (k + 1) = P (k + 1) + δ (66)

then the sub-optimal update of P ∗ becomes more conservative than the full update:

P ∗ (k + 1) ≤ P (k + 1) ≤ P (k) (67)

Finally the sub-matrices that need to be evaluated are PPP , PPD and PDP . The signif-
icance of this result is that PDD is not evaluated. In general this matrix will be of high
order since it includes most of the landmarks. The fundamental problem becomes the
selection of the partition P and D of the state vector. The diagonal of matrix ∆P can

Navigation System Design (KC-4) 29

be evaluated on-line with low computational cost. By inspecting the diagonal elements
of ∆P we have that many terms are very small compared to the corresponding previous
covariance value in the matrix P . This indicates that the new observation does not have a
significant information contribution to this particular state. This is an indication to select
a particular state as belonging to the subset D. The other criterion used is based on the
value of the actual covariance of the state. If it is below a given threshold, it can be a
candidate for the sub-vector D. In many practical situations a large number of landmarks
can usually be associated to the sub-vector D. This will introduce significant computa-
tional savings since PDD can potentially become larger than PPP . The cross-correlation
PPD and PDP are still maintained but are in general of lower order as can be appreciated
in Figure 14 .

Figure 14: Full covariance matrix divided into the covariance blocks corresponding to
the Vehicle and Preserved landmarks states (XP) and Discarded landmarks states (XD).
The cross-correlation covariance between the Preserved and Discarded states are fully
updated as shown in grey. Finally the cross-correlation between the elements of the
states corresponding to the ”Discarded landmarks” are not updated as shown in white.

Finally the selection criteria to obtain the partition of the state vector can be given with
the union of the following Ii sets:

I1 = {i : ∆P (i, i) < c1 · P (i, i)} , I2 = {i : P (i, i) < c2} , I = I1 ∪ I2 (68)

Then ∆P∗ is evaluated as follows:

∆P ∗ (i, j) = 0 ∀i, j : i ∈ I and j ∈ I
∆P ∗ (i, j) = ∆P (i, j) ∀i, j : i /∈ I or j /∈ I

(69)

The error covariance matrix is updated with the simplified matrix DP

Navigation System Design (KC-4) 30

P ∗ (k + 1, k + 1) = P (k + 1, k)−∆P ∗ (70)

The practical meaning of the set I1, is that with the appropriate selection of c1 we can
reject negligible update of covariances. As mentioned before the selection of I1 requires
the evaluation of the diagonal elements of the matrix ∆P . The evaluation of the ∆P (i, i)
elements requires a number of operations proportional to the number of states instead of
the quadratic relation required for the evaluation of the complete matrix ∆P . The second
subset defined by I2 is related to the states whose covariances are small enough to be con-
sidered practically zero. In the case of natural landmarks they become almost equivalent
to beacons at known positions. The number of elements in the set I2 will increase with
time and can eventually make the computational requirements of SLAM algorithms com-
parable to the standard beacon localisation algorithms . Finally, the magnitude of the
computation saving factor depends of the size of the set I. With appropriate exploration
policies, real time mission planning, the computation requirements can be maintained
within the bounds of the on-board resources.

Implementation Issues: Relative Map Representation The sub-optimal approach
presented becomes less conservative when the cross correlation between the non relevant
landmarks becomes small. This is very unlikely if an absolute reference frame is used,
that is when the vehicle, landmarks and observation are represented with respect to
a single reference frame. The cross-correlations between landmarks of different regions
can be substantially decreased by using a number of different bases and making the
observation relative to those bases. With this representation the map becomes grouped
in constellations. Each constellation has an associated frame based on two landmarks that
belong to this constellation. The ’base’ landmarks that define the associated frame are
represented in a global frame. All the others landmarks that belong to this constellation
are defined in the local frame. For a particular constellation, the local frame is based on
the 2 base landmarks

La =

[
xa

ya

]
, Lb =

[
xb

yb

]
(71)

It is possible to define 2 unitary vectors that describe the orientation of the base frame:

v1 = 1
‖Lb−La‖ · (Lb − La) = 1√

(xb−xa)2+(yb−ya)2
·
[
xb − xa

yb − ya

]
=

[
v11

v12

]
v2 =

[
v21

v22

]
=

[
−v12

v11

]
, 〈v2, v1〉 = 0

(72)

Navigation System Design (KC-4) 31

The rest of the landmarks in this particular constellation are represented using a local
frame with origin at La and axes parallel to the vectors ν1 and ν2.

Li =

[
xi

yi

]
, La

i =

[
ξi
ηi

]
(73)

with

ξi = 〈(Li − La) , v1〉 = (Li − La)
T · v1

ηi = 〈(Li − La) , v2〉 = (Li − La)
T · v2

(74)

The following expression can be used to obtain the absolute coordinates from the relative
coordinate representation

Li = La + ςi · v1 + ηi · v2 (75)

The reference frame is formed with two landmarks as shown in Figure 15. The observation
are then obtained relative to this frame. Assuming that the external sensor returns range
and bearing, the observation functions are:

hi = Li −XL −Ri · (cos (βi) , sin (βi)) = 0
βi = αi + φ− π/2
αi : objectanglewithrespecttolaserframe
Ri : objectrangewithrespecttolaser
(XL, φ) = (xL, yL, φ) : vehiclestates

(76)

Finally

hi = La + ςi · v1 + ηi · v2 − PL −Ri · (cos (βi) , sin (βi)) = 0 (77)

With this representation the landmark defining the bases will become the natural ”Pre-
served” landmarks. The observations in each constellation will be evaluated with respect
to the bases and can be considered in the limit as observation contaminated with white
noise. This will make the relative elements of the constellation uncorrelated with the other
constellation relative elements. The only landmarks that will maintain strong correlation
will be the ones defining the bases that are represented in absolute form.

Experimental Results The next set of plots present a comparison of the performance
of the sub-optimal algorithm. Figure 16 and 17 present two runs, one using most of the

Navigation System Design (KC-4) 32

Figure 15: Local reference frame

states and the other with only 100 states. The plots show that the total number of states
used by the system grows with time as the vehicle explores new areas. It is also shown the
number of states used by the system in grey and the number of states not updated with
stars ”*”. In the first run, very conservative values for the constant I1 and I2 were selected
so most of the states were updated with each observation. The second run corresponds to
a less conservative selection plus a limitation in the maximum number of states. Figure
17 shows that a large number of states are not updated at every time step resulting in
a significant reduction in the computational cost of the algorithm. From Figures 18 and
19 it can be seen that the accuracy of the SLAM algorithm has not been degraded by
this simplification. These Figures present the final estimated error of all the states for
both runs. It is noteworthy that only the bases are represented in absolute form. The
other states are represented in relative form and its standard deviation becomes much
smaller. One important remark regarding the advantage of the relative representation
with respect to the simplification presented: Since the bases are in absolute form they
will maintain a strong correlation with the other bases and the vehicle states. They will
be more likely to be chosen as ”preserved” landmarks since the observations will have
more contribution to them than the relative states belonging to distant bases. In fact
the states that will be chosen will most likely be the bases and the states associated with
the landmarks in the local constellation. It is also important to remark that with this

Navigation System Design (KC-4) 33

representation the simplification becomes less conservative than when using the absolute
representation. This can clearly be seen by looking at the correlation coefficients for all
the states in each case. This is shown in Figures 20 and 21 where the correlation of
the relative and absolute map respectively is presented. In Figure 20 each block of the
diagonal corresponds to a particular constellation and the last block has the vehicle states
and the bases. The different constellations becomes de-correlated from each other and
only correlated to the first block whose cross correlation are updated by the sub-optimal
algorithm presented. These results imply that with the relative representation the cross
correlation between constellation becomes zero and the sub-optimal algorithm presented
becomes close to optimal. This is not the case for the absolute representation as shown
in Figure 21 where all the states maintained strong cross-correlations.

Finally Figure 22 presents the results of a 4 km trajectory using the compressed algorithm
in a large area. In this case there are approximately 500 states in the global map. The
system created 19 different constellations to implement the relative map. The cross-
correlation coefficients between the different constellations become very small as shown
in Figure 23. This demonstrates the advantages of the compressed algorithm since the
local areas are significantly smaller than the global map. When compared with the full
SLAM implementation the algorithm generated identical results (states and covariance)
with the advantage of having very low computational requirements. For larger areas the
algorithm becomes more efficient since the cost is basically function of the number of local
landmarks. These results are important since it demonstrates even in very large areas the
computational limitation of SLAM can be overcame with the compressed algorithm and
appropriate selection of local areas.

Navigation System Design (KC-4) 34

Figure 16: Total number of states and states used and not updated. The figure presents
the total number of states with a solid black line. This number is increasing because
the vehicle is exploring new areas and validating new landmarks. The states used by the
system are represented in grey. The number of states not used is represented with ’*’. In
this run the system used most of the states available.

Figure 17: Total number of states and states used and not updated. In this run a
maximum number of states was fixed as constraint for the sub-optimal SLAM algorithm.
This is appreciated in the grey plot where the maximum number of states remain below
a given threshold. The number of states not updated increases with time.

Navigation System Design (KC-4) 35

Figure 18: final estimation errors for relative and absolute states using most of the states.

Figure 19: Final estimated error of relative and absolute states using a reduced number
of states. These results are similar to the ones using most of the states. This result
shows that the algorithm is not only consistent but close to optimal when used with the
appropriate map representation.

Navigation System Design (KC-4) 36

Figure 20: Correlation coefficient for the relative representation. Each block represents
the cross-correlation coefficient of the elements of the different constellation. The block
in the right corner contains the vehicle states and all the bases. It can be seen that the
cross-correlation between different constellations is very small. It is also clear the non-zero
cross-correlation between the bases and the different constellations. These correlations
are updated by the sub-optimal filter.

Figure 21: Correlation Coefficient for the absolute representation. In this case the map
appears completely correlated and the sub-optimal algorithm will generate consistent but
more conservative results.

Navigation System Design (KC-4) 37

Figure 22: Constellation map and vehicle trajectory. 19 constellations were formed by the
algorithm. The intersection of the bases are presented with a ’+’ and the other side of the
segment with a ’o’. The relative landmarks are represented with ’*’ and its association
with a base is represented with a line joining the landmark with the origin of the relative
coordinate system

Figure 23: Cross correlation coefficients. The plots shows 19 constellation and a block in
the right hand corner containing the correlation coefficient for the bases and the vehicle
states. It can be appreciated that the crosscorrelation between the relative states of the
different bases is very small.

Navigation System Design (KC-4) 38

References

[1] Clark S. Dissanayake G., Newman P. and Durrant-Whyte H. A Solution to Simultaneous Lo-
calisation adn Map Building (SLAM) Problem. In IEEE Journal of Robotics and Automaton,
volume 17, No.3, June 2001.

[2] Guivant J. and Nebot E. Optimization of Simultaneous Localization and Map Building
Algorithm for Real Time Implementation. 17, No.3:731–747, June 2001.

[3] John Leonard and H. Feder. Decoupled stochastic mapping for mobile robot and auv navi-
gation. IEEE Journal of Oceanic Engineering, 66, No.4:561–571, 2001.

[4] P. Maybeck. Stochastic Models, Estimation and Control, volume 1. Academic Press, 1982.

[5] J. Neira and J.D. Tardos. Data association in stochastic mapping using the joint compati-
bility test”. IEEE Transaction of Robotics and Automation, pages 890–897, 2001.

[6] Michael Montemerlo Sebastian. Fastslam: A factored solution to the simultaneous localiza-
tion and mapping problem, http://citeseer.nj.nec.com/503340.html.

[7] Cheeseman P. Smith R., Self M. A stochastic map for uncertain spatial relationships. In 4th
International Symposium on Robotic Research, MIT Press, 1987.

