

Navigation and Path-planning [DASL-102]

WEEK 1 – Potential Fields

INSTRUCTOR: Dylan Wallace

Summary

Vector Fields

Potential Functions

Navigation

Local Minima

Algorithm

MATLAB Code

Homework

References

- Vector Fields
- Potential Functions
 - Gradient functions
- Navigation
 - Updating robot position
 - Non-holonomic constraints
- Local Minima
- > Algorithm
 - Tuning constants
- > MATLAB Code
- Homework
- References

Summary

Vector Fields

Potential Functions

٠

٠

Navigation

Local Minima

Algorithm

MATLAB Code

Homework

References

Vector Fields

- We will only deal with 2-D vectors in the xy-plane
- The gradient vector is given by taking the partial derivatives of the potential function, with respect to x & y.
 - Ex: f(x, y) = < x² + y², x + y >
 - ∇f(x, y) = < 2x, 1 >
- This gradient will create a vector at every point of the space
 - This is called a gradient vector field

Summary

Vector Fields

Potential Functions

Navigation

Local Minima

Algorithm

MATLAB Code

Homework

References

We view the obstacles as repulsive forces, and the target as an ٠

Potential Functions

attractive force

•

•

Attractive:

- Gradient: $\nabla_q U_a = \begin{bmatrix} \eta_a (x - x_t) \\ \eta_a (y - y_t) \end{bmatrix}$
- Repulsive: $U_r(q) = \begin{cases} \frac{1}{2} \eta_r \left(\frac{1}{\rho} - \frac{1}{\rho_o}\right)^2 & \rho \le \rho_o \\ 0 & \rho > \rho_o \end{cases} \quad \begin{pmatrix} (x_o, y_o) : \text{ obstacle location} \\ \rho : \text{ current robot-to-obstacle distance} \\ \rho : \text{ repulsive force maximum range} \end{cases}$
 - Gradient:

 η_{a} : attractive potential constant $U_a = \frac{\eta_a}{2} \rho_t^2(q)$ (x, y, y): target location $\rho_t = \sqrt{(x_t - x)^2 + (y_t - y)^2} \qquad (x_t, y_t) : \text{ target location} \\ \rho_t : \text{ distance to target}$

 η_r : repulsive potential constant ρ_a : repulsive force maximum range

$$\begin{split} \nabla_{q}U_{r} = \begin{cases} \frac{\eta_{r}(x_{o}-x)}{\rho^{3}} \left(\frac{1}{\rho} - \frac{1}{\rho_{o}}\right) \\ \frac{\eta_{r}(y_{o}-y)}{\rho^{3}} \left(\frac{1}{\rho} - \frac{1}{\rho_{o}}\right) & \text{when} \quad \rho \leq \rho_{o} \\ \\ \nabla_{q}U_{r} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} & \text{when} \quad \rho > \rho_{o} \end{split}$$

4

Sunday, May 14, 2017, 13:01 **Navigation Summary** We can update the robot position by using the previous position, **Vector Fields** a sampling rate, and the gradient vector: **Potential Functions** $q[i] = q[i-1] - \Delta T \nabla_a (U_a + U_r)$ **Navigation** Local Minima $x[i] = \begin{cases} x[i-1] - \Delta T \eta_a (x[i-1] - x_i) - \frac{\Delta T \eta_r (x_o - x[i-1])}{\rho^3} \left\{ \frac{1}{\rho} - \frac{1}{\rho_o} \right\} \text{ when } \rho \le \rho_o \\ x[i-1] - \Delta T \eta_a (x[i-1] - x_i) \text{ when } \rho > \rho_o \end{cases}$ Algorithm MATLAB Code Homework $y[i] = \begin{cases} y[i-1] - \Delta T \eta_a (y[i-1] - y_i) - \frac{\Delta T \eta_r (y_o - y[i-1])}{\rho^3} \left\{ \frac{1}{\rho} - \frac{1}{\rho_o} \right\} & \text{when } \rho \le \rho_o \\ y[i-1] - \Delta T \eta_a (y[i-1] - y_i) & \text{when } \rho > \rho_o \end{cases}$ References $\rho = \sqrt{(y_o - y[i-1])^2 + (x_o - x[i-1])^2}$ 5

Summary

Vector Fields

Potential Functions

٠

•

Navigation

Local Minima

Algorithm

MATLAB Code

Homework

References

Non-Holonomic Constraints

- For robots that cannot move omnidirectionally, we need to have special equations to move the robot to the desired position
- Different robot configurations will have different equations
- Two-wheeled system (no steering):

cos 0 0 sin 0

	Sunday, May 14, 2017, 1
Summary	Local Minima
Vector Fields	• The way the potential functions are created, a local minimum is
Potential Functions	created at the target, and the robot navigates toward a local
Navigation	minima
	 Other minima can be created if the configuration space has
	obstacles that are placed in a way that creates a local minima
Algorithm	• i.e. Repulsive forces cancel each other
MATLAB Code	• This will cause our robot to be stuck stopping the pavigation
Homework	
References	Goal
	$Obstacle \rightarrow \leftarrow Obstacle$
	1 1 7

Summary	<u>Algorithm</u>
Vector Fields	 We can combine all of this math into a useable algorithm for our
Potential Functions	robot to follow.
Navigation	
Local Minima	I. Define attractive, repulsive, and minimum constants
Algorithm	II. Loop over a number of iterations, which define the resolution
MATLAB Code	1. Calculate distance to target and obstacles
Homework	2. If the current distance is less than the maximum
References	i. Calculate repulsive gradient
	ii. If not, repulsive gradient is zero
	3. Update robot position
	8

	Sunday, May 14, 2017, 14:12
Summary	<u>Homework</u>
/ector Fields	• Use the MATLAB code to create a situation with 3 obstacles. Tune
Potential Functions	your constants accordingly. The space: 10 x 10
Navigation	 Obstacles: (3, 1), (4, 5), & (7, 9)
ocal Minima	• Target: (10, 10)
Algorithm	 Make sure to plot your results with every iteration
	You will need to tune your attractive, repulsive, and maximum
Jamowark	distance constants to get the best results
Poferences	• If you do not have access to MATLAB, you can use GNU Octave as
References	a free alternative
	Due by next lecture
	10

	Sunday, May 14, 2017, 14:34
Summary	<u>http://tutorial.math.lamar.edu/Classes/CalcIII/GradientVectorTang</u>
/ector Fields	<u>entPlane.aspx</u>
Potential Functions	<u>http://tutorial.math.lamar.edu/Classes/CalcIII/VectorFields.aspx</u>
Navigation	 <u>https://www.ijsr.net/archive/v5i1/NOV152938.pdf</u>
.ocal Minima	 <u>http://daslhub.org/unlv/wiki/lib/exe/fetch.php?media=alvarop:le</u>
Algorithm	<u>cturexxhandouts.pdf</u>
MATLAB Code	 <u>http://phoenix.goucher.edu/~jillz/cs325_robotics/goodrich_poten</u>
Homework	<u>tial_fields.pdf</u>
References	 <u>http://www.cs.cmu.edu/~./motionplanning/lecture/Chap4-</u>
	Potential-Field_howie.pdf
	 <u>https://www.gnu.org/software/octave/</u>
	 https://www.gnu.org/software/octave/doc/interpreter/