

Drones and Autonomous Systems Laboratory Ball balancing on the beam class 1

DONGBIN KIM –

Ph.D. Candidate

-Course Introduction-

Mechanical Engineering, University of Nevada, Las Vegas

Course syllabus

Copyright : Dongbin Kim. E-mail : <u>dongbin.kim@unlv.edu</u> Drones and Autonomous Systems Lab, UNLV

1. Course Introduction

2. Ball and Beam Dynamics

3. OPENCV Practice

4. ROS Integrated Final Project

1. Introduction – Why?

Copyright : Dongbin Kim. E-mail : <u>dongbin.kim@unlv.edu</u> Drones and Autonomous Systems Lab, UNLV

Drones and Autonomous Systems Lab

1. Introduction – Why?

Copyright : Dongbin Kim. E-mail : <u>dongbin.kim@unlv.edu</u> Drones and Autonomous Systems Lab, UNLV

Transferring from Simulation to Real life application is DIFFICULT

Humanoid Simulation

- Hardware damage loss free.
- Always shows the positive result

Humanoid Real life application

- Gantry is installed for the safety purpose.
- Wrong calibration will fall the humanoid
- This process has more challenges than the simulation

1. Introduction – Why Ball and Beam?

Copyright : Dongbin Kim. E-mail : <u>dongbin.kim@unlv.edu</u> Drones and Autonomous Systems Lab, UNLV

(1 degree of freedom system)

(2 degree of freedom system)

1. Introduction – Goal

Copyright : Dongbin Kim. E-mail : <u>dongbin.kim@unlv.edu</u> Drones and Autonomous Systems Lab, UNLV

