User Tools

Site Tools


2_link_kinematics

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
2_link_kinematics [2018/09/27 00:45]
ntorresreyes [Final Words]
2_link_kinematics [2018/09/27 01:12] (current)
ntorresreyes [Graphical Simulation]
Line 293: Line 293:
 ==== Graphical Simulation ==== ==== Graphical Simulation ====
 \\ \\
-Matlab can be used to produce a graphical simulation of the 2-link arm mechanism for a given angle.+Matlab can be used to produce a graphical simulation of the 2-link arm mechanism for a given angle. Many of these simulations are based on the [[http://​petercorke.com/​wordpress/​toolboxes/​robotics-toolbox|Robotics Toolbox]] created by Peter Corke for Matlab. The link contains information on how to download the toolbox and install into Matlab. The [[https://​robotacademy.net.au/​masterclass/​inverse-kinematics-and-robot-motion/?​lesson=256|Robot Academy]] also has resources on using the Robotics Toolbox for inverse kinematics. 
 +\\ 
 +\\ 
 +The following code can be used to model a planar 2-link arm. Many of the functions behind the arm use the same theory and math covered previously in the tutorial.
 \\ \\
 \\ \\
 <​code>​ <​code>​
 +>>​mdl_planar2 
 +>>​p2.plot(qz)
 </​code>​ </​code>​
 +Which results in the following image:
 +\\
 +\\
 +{{:​torres:​tutorials:​2_link_tutorial_22.png?​nolink&​450|}}
 +\\
 +\\
 +Next, a translation can be made and inverse kinematics applied:
 +\\
 +\\
 +<​code>​
 +>> T = transl(1.5,​0.5,​0)
 +T =
 +    1.0000 ​        ​0 ​        ​0 ​   1.5000
 +         ​0 ​   1.0000 ​        ​0 ​   0.5000
 +         ​0 ​        ​0 ​   1.0000 ​        0
 +         ​0 ​        ​0 ​        ​0 ​   1.0000
 +>> q = p2.ikine(T,'​mask',​[1 1 0 0 0 0])
 +q =
 +   ​-0.3373 ​   1.3181
 +>> p2.plot(q)
 +</​code>​
 +Which will plot the arm with the joint angles that will result in the end-effector having a position of (1.5, 0.5)
 +\\
 +\\
 +{{:​torres:​tutorials:​2_link_tutorial_23.png?​nolink&​450|}}
 +\\
 \\ \\
 +By changing the T matrix with different values of transl(x,​y,​0),​ and using the inverse kinematic function, one can obtain the joint angle values for any possible position and simulate them graphically in the easiest way possible.
 ==== Final Words ==== ==== Final Words ====
  
2_link_kinematics.txt · Last modified: 2018/09/27 01:12 by ntorresreyes