
Video Processing

Unlike static images, video monitors a scene dynamicall
This lab introduces video processing and leverages Scilab’s Image Processing and Computer
Vision (IPCV) and Scilab Computer Vision
is provided. Next, object tracking
camera module. Visual servoing uses frame data to command robot motions. As such, these
concepts are important towards visual servoing development.

Preliminary:

Before doing this lab, installation of Scilab and the IPCV and SCV modules must be installed.
Also, the USB camera module should b
testing software includes

Concept 1:

Scilab captures 24
blue channels). Scilab’s IPCV and SCV modules feature basic popular functions. One example
is to generate greyscale version of the RGB video. Another is thresholding greyscale video.
Figure 1A
Thus is a sort of a “Hello World” example for video processing.

Step 1:

Assuming one has already installed ATOMS modules
the IDE is displayed (
to start typing Scilab code (called SCE files).

Figure 1A:
(left), greyscale processing (middle) and thresholding (right).

Video Processing

Unlike static images, video monitors a scene dynamicall
This lab introduces video processing and leverages Scilab’s Image Processing and Computer
Vision (IPCV) and Scilab Computer Vision
is provided. Next, object tracking
camera module. Visual servoing uses frame data to command robot motions. As such, these
concepts are important towards visual servoing development.

Preliminary: Scilab installation and modules

Before doing this lab, installation of Scilab and the IPCV and SCV modules must be installed.
Also, the USB camera module should b
testing software includes

Concept 1: Grey

Scilab captures 24
blue channels). Scilab’s IPCV and SCV modules feature basic popular functions. One example
is to generate greyscale version of the RGB video. Another is thresholding greyscale video.
Figure 1A demonstrates the video feed (left column) and processed ones (middle and right).
Thus is a sort of a “Hello World” example for video processing.

Step 1: Execute Scilab and launch Editor (called SciNotes)

Assuming one has already installed ATOMS modules
the IDE is displayed (
to start typing Scilab code (called SCE files).

Figure 1A: Executing Scilab program
(left), greyscale processing (middle) and thresholding (right).

Unlike static images, video monitors a scene dynamicall
This lab introduces video processing and leverages Scilab’s Image Processing and Computer
Vision (IPCV) and Scilab Computer Vision
is provided. Next, object tracking
camera module. Visual servoing uses frame data to command robot motions. As such, these
concepts are important towards visual servoing development.

Scilab installation and modules

Before doing this lab, installation of Scilab and the IPCV and SCV modules must be installed.
Also, the USB camera module should b
testing software includes AMCap

Grey-scale and T

Scilab captures 24-bit RGB video
blue channels). Scilab’s IPCV and SCV modules feature basic popular functions. One example
is to generate greyscale version of the RGB video. Another is thresholding greyscale video.

demonstrates the video feed (left column) and processed ones (middle and right).
Thus is a sort of a “Hello World” example for video processing.

Execute Scilab and launch Editor (called SciNotes)

Assuming one has already installed ATOMS modules
the IDE is displayed (Figure 1B
to start typing Scilab code (called SCE files).

Executing Scilab program
(left), greyscale processing (middle) and thresholding (right).

Hands

Video

Unlike static images, video monitors a scene dynamicall
This lab introduces video processing and leverages Scilab’s Image Processing and Computer
Vision (IPCV) and Scilab Computer Vision (SCV)
is provided. Next, object tracking is demonstrated. These concepts use an off
camera module. Visual servoing uses frame data to command robot motions. As such, these
concepts are important towards visual servoing development.

Scilab installation and modules

Before doing this lab, installation of Scilab and the IPCV and SCV modules must be installed.
Also, the USB camera module should be connected to one’s computer and tested. Some free

AMCap or eCAMView

scale and Threshold

bit RGB video where each pixel is represented by 3 bytes (red, green and
blue channels). Scilab’s IPCV and SCV modules feature basic popular functions. One example
is to generate greyscale version of the RGB video. Another is thresholding greyscale video.

demonstrates the video feed (left column) and processed ones (middle and right).
Thus is a sort of a “Hello World” example for video processing.

Execute Scilab and launch Editor (called SciNotes)

Assuming one has already installed ATOMS modules
Figure 1B). Click on SciNotes (red arrow) to open a new and blank canvas

to start typing Scilab code (called SCE files).

Executing Scilab program scilabHelloVideo1_0a.sce
(left), greyscale processing (middle) and thresholding (right).

Hands-on Lab

Video Processing

Unlike static images, video monitors a scene dynamicall
This lab introduces video processing and leverages Scilab’s Image Processing and Computer

(SCV) modules.
is demonstrated. These concepts use an off

camera module. Visual servoing uses frame data to command robot motions. As such, these
concepts are important towards visual servoing development.

Scilab installation and modules

Before doing this lab, installation of Scilab and the IPCV and SCV modules must be installed.
e connected to one’s computer and tested. Some free

eCAMView.

hresholded Video

where each pixel is represented by 3 bytes (red, green and
blue channels). Scilab’s IPCV and SCV modules feature basic popular functions. One example
is to generate greyscale version of the RGB video. Another is thresholding greyscale video.

demonstrates the video feed (left column) and processed ones (middle and right).
Thus is a sort of a “Hello World” example for video processing.

Execute Scilab and launch Editor (called SciNotes)

Assuming one has already installed ATOMS modules IPCV and SCV, when Scilab is
). Click on SciNotes (red arrow) to open a new and blank canvas

to start typing Scilab code (called SCE files).

scilabHelloVideo1_0a.sce
(left), greyscale processing (middle) and thresholding (right).

on Lab

Processing

Unlike static images, video monitors a scene dynamically by sensing changes between frames.
This lab introduces video processing and leverages Scilab’s Image Processing and Computer

modules. First, a simple thresholding example
is demonstrated. These concepts use an off

camera module. Visual servoing uses frame data to command robot motions. As such, these
concepts are important towards visual servoing development.

Before doing this lab, installation of Scilab and the IPCV and SCV modules must be installed.
e connected to one’s computer and tested. Some free

ed Video scilabHelloVideo1_0a.sce

where each pixel is represented by 3 bytes (red, green and
blue channels). Scilab’s IPCV and SCV modules feature basic popular functions. One example
is to generate greyscale version of the RGB video. Another is thresholding greyscale video.

demonstrates the video feed (left column) and processed ones (middle and right).
Thus is a sort of a “Hello World” example for video processing.

Execute Scilab and launch Editor (called SciNotes)

IPCV and SCV, when Scilab is
). Click on SciNotes (red arrow) to open a new and blank canvas

scilabHelloVideo1_0a.sce
(left), greyscale processing (middle) and thresholding (right).

© Copyright Paul Oh

y by sensing changes between frames.
This lab introduces video processing and leverages Scilab’s Image Processing and Computer

First, a simple thresholding example
is demonstrated. These concepts use an off-

camera module. Visual servoing uses frame data to command robot motions. As such, these

Before doing this lab, installation of Scilab and the IPCV and SCV modules must be installed.
e connected to one’s computer and tested. Some free

scilabHelloVideo1_0a.sce

where each pixel is represented by 3 bytes (red, green and
blue channels). Scilab’s IPCV and SCV modules feature basic popular functions. One example
is to generate greyscale version of the RGB video. Another is thresholding greyscale video.

demonstrates the video feed (left column) and processed ones (middle and right).

IPCV and SCV, when Scilab is
). Click on SciNotes (red arrow) to open a new and blank canvas

scilabHelloVideo1_0a.sce displays live video

© Copyright Paul Oh

y by sensing changes between frames.
This lab introduces video processing and leverages Scilab’s Image Processing and Computer

First, a simple thresholding example
-the-shelf USB

camera module. Visual servoing uses frame data to command robot motions. As such, these

Before doing this lab, installation of Scilab and the IPCV and SCV modules must be installed.
e connected to one’s computer and tested. Some free

scilabHelloVideo1_0a.sce

where each pixel is represented by 3 bytes (red, green and
blue channels). Scilab’s IPCV and SCV modules feature basic popular functions. One example
is to generate greyscale version of the RGB video. Another is thresholding greyscale video.

demonstrates the video feed (left column) and processed ones (middle and right).

IPCV and SCV, when Scilab is executed,
). Click on SciNotes (red arrow) to open a new and blank canvas

displays live video

© Copyright Paul Oh

y by sensing changes between frames.
This lab introduces video processing and leverages Scilab’s Image Processing and Computer

First, a simple thresholding example
shelf USB

camera module. Visual servoing uses frame data to command robot motions. As such, these

Before doing this lab, installation of Scilab and the IPCV and SCV modules must be installed.
e connected to one’s computer and tested. Some free

where each pixel is represented by 3 bytes (red, green and
blue channels). Scilab’s IPCV and SCV modules feature basic popular functions. One example
is to generate greyscale version of the RGB video. Another is thresholding greyscale video.

demonstrates the video feed (left column) and processed ones (middle and right).

executed,
). Click on SciNotes (red arrow) to open a new and blank canvas

Video Processing

Step 2:

Figure 1B:
the SciNotes icon (red arrow

// FILE: scilabHelloVideo1_0a.sce
// DATE:
// AUTH: P.Oh
// REFS: Must have ATOMS modules: Image Processing and Computer Vision (IPCV)
// and Scilab Computer Vision
// VERS: 1.0a: Basic display
// REFS: scilabHelloVision1_1b.sci
// DESC: Display what USB webcam sees: raw (colo

// (1) initialize the Scilab Computer Vision Module
scicv_Init();

// (2) Get ID of the webcam (assumes only 1 webcam connected)
// Usually 0: computer's build
videoCapture = new_VideoCapture(0);

// (3) Set up a current graphic figure (window)

f = scf(0);

// (4) Endless loop that grabs frame, displays it, and repeats
while is_handle_valid(f)
 [ret, frame] = VideoCapture_read(videoCapture); // grab and return a
 if is_handle_valid(f) then

 end // end if
end // end while

delete("all"); // kill all frames

Video Processing

Step 2: Type scripting code into SciNotes

Figure 1B: Scilab IDE shows loaded
the SciNotes icon (red arrow

// FILE: scilabHelloVideo1_0a.sce
// DATE: 02/19/20 18:48
// AUTH: P.Oh
// REFS: Must have ATOMS modules: Image Processing and Computer Vision (IPCV)
// and Scilab Computer Vision
// VERS: 1.0a: Basic display
// REFS: scilabHelloVision1_1b.sci
// DESC: Display what USB webcam sees: raw (colo

// (1) initialize the Scilab Computer Vision Module
scicv_Init();

// (2) Get ID of the webcam (assumes only 1 webcam connected)
// Usually 0: computer's build
videoCapture = new_VideoCapture(0);

// (3) Set up a current graphic figure (window)

f = scf(0);

// (4) Endless loop that grabs frame, displays it, and repeats
while is_handle_valid(f)

[ret, frame] = VideoCapture_read(videoCapture); // grab and return a
if is_handle_valid(f) then

 // ret is TRUE, so display frame
 subplot(1,3,1); // display raw RGB video in column 1 subplot
 matplot(frame);

 greyFrame = cvtColor(frame, CV_BGR2GRAY);
 subplot(1,3,2); // Display greyscale version in column 2 subplot
 matplot(greyFrame);

 thresholdValue = 150; // 0 (whiter stuff becomes white)
 [thresh, thresholdedFrame] = threshold(greyFrame, thresholdValue, 255, THRESH_BINARY);
 subplot(1,3,3); // Display thresholded video in column 3 subplot
 matplot(thresholdedFrame);

end // end if
end // end while

delete("all"); // kill all frames

Type scripting code into SciNotes

Scilab IDE shows loaded
the SciNotes icon (red arrow in left image

// FILE: scilabHelloVideo1_0a.sce
02/19/20 18:48

// REFS: Must have ATOMS modules: Image Processing and Computer Vision (IPCV)
// and Scilab Computer Vision
// VERS: 1.0a: Basic display
// REFS: scilabHelloVision1_1b.sci
// DESC: Display what USB webcam sees: raw (colo

// (1) initialize the Scilab Computer Vision Module

// (2) Get ID of the webcam (assumes only 1 webcam connected)
// Usually 0: computer's build
videoCapture = new_VideoCapture(0);

// (3) Set up a current graphic figure (window)

// (4) Endless loop that grabs frame, displays it, and repeats
while is_handle_valid(f)

[ret, frame] = VideoCapture_read(videoCapture); // grab and return a
if is_handle_valid(f) then

// ret is TRUE, so display frame
subplot(1,3,1); // display raw RGB video in column 1 subplot
matplot(frame);

greyFrame = cvtColor(frame, CV_BGR2GRAY);
1,3,2); // Display greyscale version in column 2 subplot

matplot(greyFrame);

thresholdValue = 150; // 0 (whiter stuff becomes white)
[thresh, thresholdedFrame] = threshold(greyFrame, thresholdValue, 255, THRESH_BINARY);
ubplot(1,3,3); // Display thresholded video in column 3 subplot

matplot(thresholdedFrame);
end // end if

delete("all"); // kill all frames

Figure 1C:

Type scripting code into SciNotes and save as

Scilab IDE shows loaded ATOMS modules marked in the
in left image) will launch a blank canvass

// FILE: scilabHelloVideo1_0a.sce - Works

// REFS: Must have ATOMS modules: Image Processing and Computer Vision (IPCV)
// and Scilab Computer Vision

// REFS: scilabHelloVision1_1b.sci
// DESC: Display what USB webcam sees: raw (colo

// (1) initialize the Scilab Computer Vision Module

// (2) Get ID of the webcam (assumes only 1 webcam connected)
// Usually 0: computer's build-in webcam; 1: USB webcam
videoCapture = new_VideoCapture(0);

// (3) Set up a current graphic figure (window)

// (4) Endless loop that grabs frame, displays it, and repeats

[ret, frame] = VideoCapture_read(videoCapture); // grab and return a
if is_handle_valid(f) then

// ret is TRUE, so display frame
subplot(1,3,1); // display raw RGB video in column 1 subplot

greyFrame = cvtColor(frame, CV_BGR2GRAY);
1,3,2); // Display greyscale version in column 2 subplot

thresholdValue = 150; // 0 (whiter stuff becomes white)
[thresh, thresholdedFrame] = threshold(greyFrame, thresholdValue, 255, THRESH_BINARY);
ubplot(1,3,3); // Display thresholded video in column 3 subplot

matplot(thresholdedFrame);

delete("all"); // kill all frames

Figure 1C: SciNote file

and save as scilabHelloVideo1_0a.sce

ATOMS modules marked in the
will launch a blank canvass

Works

// REFS: Must have ATOMS modules: Image Processing and Computer Vision (IPCV)

// DESC: Display what USB webcam sees: raw (color), greyscale and threshold

// (1) initialize the Scilab Computer Vision Module

// (2) Get ID of the webcam (assumes only 1 webcam connected)
in webcam; 1: USB webcam

// (3) Set up a current graphic figure (window) - which will display our video

// (4) Endless loop that grabs frame, displays it, and repeats

[ret, frame] = VideoCapture_read(videoCapture); // grab and return a

// ret is TRUE, so display frame
subplot(1,3,1); // display raw RGB video in column 1 subplot

greyFrame = cvtColor(frame, CV_BGR2GRAY);
1,3,2); // Display greyscale version in column 2 subplot

thresholdValue = 150; // 0 (whiter stuff becomes white)
[thresh, thresholdedFrame] = threshold(greyFrame, thresholdValue, 255, THRESH_BINARY);
ubplot(1,3,3); // Display thresholded video in column 3 subplot

SciNote file scilabHelloVideo1_0a.sce

scilabHelloVideo1_0a.sce

ATOMS modules marked in the
will launch a blank canvass

// REFS: Must have ATOMS modules: Image Processing and Computer Vision (IPCV)

r), greyscale and threshold

// (2) Get ID of the webcam (assumes only 1 webcam connected)
in webcam; 1: USB webcam

which will display our video

// (4) Endless loop that grabs frame, displays it, and repeats

[ret, frame] = VideoCapture_read(videoCapture); // grab and return a

subplot(1,3,1); // display raw RGB video in column 1 subplot

1,3,2); // Display greyscale version in column 2 subplot

thresholdValue = 150; // 0 (whiter stuff becomes white)
[thresh, thresholdedFrame] = threshold(greyFrame, thresholdValue, 255, THRESH_BINARY);
ubplot(1,3,3); // Display thresholded video in column 3 subplot

scilabHelloVideo1_0a.sce

© Copyright Paul Oh

scilabHelloVideo1_0a.sce

ATOMS modules marked in the red ovals (left
will launch a blank canvass (right).

// REFS: Must have ATOMS modules: Image Processing and Computer Vision (IPCV)

r), greyscale and threshold

which will display our video

[ret, frame] = VideoCapture_read(videoCapture); // grab and return a frame

subplot(1,3,1); // display raw RGB video in column 1 subplot

1,3,2); // Display greyscale version in column 2 subplot

[thresh, thresholdedFrame] = threshold(greyFrame, thresholdValue, 255, THRESH_BINARY);
ubplot(1,3,3); // Display thresholded video in column 3 subplot

scilabHelloVideo1_0a.sce

© Copyright Paul Oh

scilabHelloVideo1_0a.sce

(left). Clicking on

// REFS: Must have ATOMS modules: Image Processing and Computer Vision (IPCV)

which will display our video

frame

[thresh, thresholdedFrame] = threshold(greyFrame, thresholdValue, 255, THRESH_BINARY);

scilabHelloVideo1_0a.sce

© Copyright Paul Oh

Clicking on

[thresh, thresholdedFrame] = threshold(greyFrame, thresholdValue, 255, THRESH_BINARY);

Video Processing

© Copyright Paul Oh

The SCE file comments four steps for implementing and displaying video. One observes that
Scilab code looks similar to C programming as well as Matlab scripts. First, all video processing
begins with initiating the SCV module by calling the function scicv_Init(). Second, the
camera is specified by calling new_VideoCapture(0). As commented, many laptops have a
built-in camera. Thus “0” would invoke the computer’s default camera. Since this lab uses a
USB camera module, one may need to change this to new_VideoCapture(1). This function
returns a user-defined handle, which for this example, is named videoCapture. Third, the
video’s display window is setup by calling the function scf(0). This function sets the current
graphic figure as the one to display in. This call returns a user-defined handle, which in this
example is called f. The last step is an endless while loop. This is where one would put any
video processing statements.

Step 3: Filling the while loop - Implement Greyscale conversion and Thresholding

The endless while loop makes several function calls. The first is to capture one frame from the
video feed by calling the function VideoCapture_read(videoCapture). By using the
previously defined handle videoCapture, the frame is stored in the variable frame. The
subplot and matplot functions in Scilab mimic those in Matlab; here the raw RGB frame is
displayed in the first column of the current graphic window (left image in Figure 1A).

The SCV function cvtColor is used to convert images. There are several options and
CV_BGR2GRAY is the SCV-defined variable for converting the RGB frame to greyscale. The
function returns a handle that is stored in the user-defined variable named greyFrame. Again,
subplot and matplot are used to display this greyscale frame in the second column of the current
graphic window (center image of Figure 1A).

SCV also has a function for thresholding called threshold. This function takes as input, the
frame one wishes to threshold (which was called greyFrame), compares it to a user-defined
threshold value (which was called thresholdValue and set to 150). The additional inputs
specify that the maximum value of a pixel value (255 in this case), and that a binary image (black
or white) is to be generated (using the SCV defined variable THRESH_BINARY). The resulting
thresholded frame is stored in user-defined handle, named thresholdedFrame in this example.
Again, subplot and matplot are used to display the thresholded image in column 3 of the current
graphic window (right image of Figure 1A).

When the user terminates the program, the while loop exits and the graphic windows are deleted
and release memory.

Step 4: Run the Scilab script

Clicking on the Execute button (see red arrow in Figure 1B right) will run the SCE script and
should display the 3 images on a single row, as shown in Figure 1A.

Congratulations! You can capture, processing and display Video!

Video Processing

Concept

In lecture, the sum
commonly used in image and video processing to track objects. As such, it is a built
many vision software packages. Both Scilab and Matlab have module and toolboxes that include
the SSD. This

PixelFormer was used to create
Figure 2A
annotated text boxes and red arrows just show relevant pixel locations. These locations were
confirmed by moving the mouse over these pixel boxes.
used to save these pixel maps as PNG files

Step 1:

Figure 2A
template1BlackPixel.png

// FILE: sciLabTracking1_0a.sce
// DATE: 03/18/20
// AUTH: P.Oh
// VERS: 1_0a: SSD tracking of 1x1 black pixel template thru a 50x10 image
// DESC: Goal: Find object in an image.
scicv_Init();
img = imread("M:
img_template = imread("
img_result =
disp("Result: number of Rows:");
disp(Mat_rows_get(img_result));
disp("Result: number of Columns:");
disp(Mat_cols_get(img_result));
/* uncomment if wish t
disp("img_result: entire");
disp(img_result(:,:));
*/
[min_value, max_value, min_value_loc, max_value_loc] =
disp("min_value =");
disp(min_value);
disp("location in image:")
disp(min_value_loc);
delete_Mat(img);
delete_Ma
delete_Mat(img_result);

Video Processing

Concept 2: Object Detection

In lecture, the sum
commonly used in image and video processing to track objects. As such, it is a built
many vision software packages. Both Scilab and Matlab have module and toolboxes that include
the SSD. This SSD function will be first demonstrated with a static image in Scilab.

PixelFormer was used to create
Figure 2A left and right respectively are the 50x1 image and 1x1 template pixel maps.
annotated text boxes and red arrows just show relevant pixel locations. These locations were
confirmed by moving the mouse over these pixel boxes.
used to save these pixel maps as PNG files

Step 1: Type scripting code into SciNotes and save as

Figure 2A: 50x10 image file
template1BlackPixel.png

// FILE: sciLabTracking1_0a.sce
// DATE: 03/18/20
// AUTH: P.Oh
// VERS: 1_0a: SSD tracking of 1x1 black pixel template thru a 50x10 image
// DESC: Goal: Find object in an image.
scicv_Init();
img = imread("M:
img_template = imread("
img_result = matchTemplate
disp("Result: number of Rows:");
disp(Mat_rows_get(img_result));
disp("Result: number of Columns:");
disp(Mat_cols_get(img_result));
/* uncomment if wish t
disp("img_result: entire");
disp(img_result(:,:));

[min_value, max_value, min_value_loc, max_value_loc] =
disp("min_value =");
disp(min_value);
disp("location in image:")
disp(min_value_loc);
delete_Mat(img);
delete_Mat(img_template);
delete_Mat(img_result);

Figure 2B:

Object Detection

In lecture, the sum-of-square differences (SSD)
commonly used in image and video processing to track objects. As such, it is a built
many vision software packages. Both Scilab and Matlab have module and toolboxes that include

SSD function will be first demonstrated with a static image in Scilab.

PixelFormer was used to create
and right respectively are the 50x1 image and 1x1 template pixel maps.

annotated text boxes and red arrows just show relevant pixel locations. These locations were
confirmed by moving the mouse over these pixel boxes.
used to save these pixel maps as PNG files

Type scripting code into SciNotes and save as

50x10 image file image1BlackPixel.png
template1BlackPixel.png

// FILE: sciLabTracking1_0a.sce
// DATE: 03/18/20 16:02

// VERS: 1_0a: SSD tracking of 1x1 black pixel template thru a 50x10 image
// DESC: Goal: Find object in an image.

img = imread("M:\00courses\scilabVideo
img_template = imread("template1BlackPixel.png

matchTemplate(img, img_template,
disp("Result: number of Rows:");
disp(Mat_rows_get(img_result));
disp("Result: number of Columns:");
disp(Mat_cols_get(img_result));
/* uncomment if wish to all values
disp("img_result: entire");
disp(img_result(:,:));

[min_value, max_value, min_value_loc, max_value_loc] =
disp("min_value =");
disp(min_value);
disp("location in image:")
disp(min_value_loc);
delete_Mat(img);

t(img_template);
delete_Mat(img_result);

Figure 2B: sciLabTracking1_0a.sce

Object Detection with Static Images

square differences (SSD)
commonly used in image and video processing to track objects. As such, it is a built
many vision software packages. Both Scilab and Matlab have module and toolboxes that include

SSD function will be first demonstrated with a static image in Scilab.

PixelFormer was used to create greyscale (i.e.
and right respectively are the 50x1 image and 1x1 template pixel maps.

annotated text boxes and red arrows just show relevant pixel locations. These locations were
confirmed by moving the mouse over these pixel boxes.
used to save these pixel maps as PNG files

Type scripting code into SciNotes and save as

image1BlackPixel.png
template1BlackPixel.png (right)

// FILE: sciLabTracking1_0a.sce

// VERS: 1_0a: SSD tracking of 1x1 black pixel template thru a 50x10 image
// DESC: Goal: Find object in an image.

scilabVideo\image1BlackPixel.png
template1BlackPixel.png

(img, img_template,
disp("Result: number of Rows:");
disp(Mat_rows_get(img_result));
disp("Result: number of Columns:");
disp(Mat_cols_get(img_result));

o all values

[min_value, max_value, min_value_loc, max_value_loc] =

sciLabTracking1_0a.sce

with Static Images

square differences (SSD) similarity measure was introduced. The SSD is
commonly used in image and video processing to track objects. As such, it is a built
many vision software packages. Both Scilab and Matlab have module and toolboxes that include

SSD function will be first demonstrated with a static image in Scilab.

greyscale (i.e. 256-color
and right respectively are the 50x1 image and 1x1 template pixel maps.

annotated text boxes and red arrows just show relevant pixel locations. These locations were
confirmed by moving the mouse over these pixel boxes.

Type scripting code into SciNotes and save as sciLabTracking1_0a.sce

image1BlackPixel.png

// VERS: 1_0a: SSD tracking of 1x1 black pixel template thru a 50x10 image

image1BlackPixel.png
template1BlackPixel.png");

(img, img_template, CV_TM_SQDIFF

[min_value, max_value, min_value_loc, max_value_loc] =

sciLabTracking1_0a.sce

with Static Images - sciLabTracking1_0a.sce

similarity measure was introduced. The SSD is
commonly used in image and video processing to track objects. As such, it is a built
many vision software packages. Both Scilab and Matlab have module and toolboxes that include

SSD function will be first demonstrated with a static image in Scilab.

color plate 8 bits per pixel) pixel maps.
and right respectively are the 50x1 image and 1x1 template pixel maps.

annotated text boxes and red arrows just show relevant pixel locations. These locations were
confirmed by moving the mouse over these pixel boxes. Pixelformer File

sciLabTracking1_0a.sce

image1BlackPixel.png (left) and a 1x1 template file

// VERS: 1_0a: SSD tracking of 1x1 black pixel template thru a 50x10 image

image1BlackPixel.png");

CV_TM_SQDIFF); // 0 = match

[min_value, max_value, min_value_loc, max_value_loc] = minMaxLoc

sciLabTracking1_0a.sce implements

© Copyright Paul Oh

sciLabTracking1_0a.sce

similarity measure was introduced. The SSD is
commonly used in image and video processing to track objects. As such, it is a built
many vision software packages. Both Scilab and Matlab have module and toolboxes that include

SSD function will be first demonstrated with a static image in Scilab.

8 bits per pixel) pixel maps.
and right respectively are the 50x1 image and 1x1 template pixel maps.

annotated text boxes and red arrows just show relevant pixel locations. These locations were
File – Export

sciLabTracking1_0a.sce

1x1 template file

// VERS: 1_0a: SSD tracking of 1x1 black pixel template thru a 50x10 image

); // 0 = match

minMaxLoc(img_result)

implements SSD tracking

© Copyright Paul Oh

sciLabTracking1_0a.sce

similarity measure was introduced. The SSD is
commonly used in image and video processing to track objects. As such, it is a built-in function in
many vision software packages. Both Scilab and Matlab have module and toolboxes that include

SSD function will be first demonstrated with a static image in Scilab.

8 bits per pixel) pixel maps.
and right respectively are the 50x1 image and 1x1 template pixel maps. Th

annotated text boxes and red arrows just show relevant pixel locations. These locations were
Export was then

sciLabTracking1_0a.sce

1x1 template file

(img_result)

SSD tracking

© Copyright Paul Oh

similarity measure was introduced. The SSD is
in function in

many vision software packages. Both Scilab and Matlab have module and toolboxes that include

8 bits per pixel) pixel maps.
The

annotated text boxes and red arrows just show relevant pixel locations. These locations were
was then

Video Processing

Like in Concept 1,
module
(e.g. files paths were not setup), one should explicitly show the drive and folder location of the
image file (yellow highlight).

The SCV function
inputs. SCV has a defined constant named
the SSD equation (shown in lecture) for
stored in a Scilab

Beyond the scope of this concept,
they are defined in
pointers to the memory locations of the image pixels. The important point to note is that Scilab’s
SCV calls
installing

To show the pixel location in the original image with the best match, the Scilab function
minMaxLoc

Step 2:

Referring to
(10x5). Indeed, Figure 2C shows
location.

Figure 2C:

Congratulations! You can

Video Processing

Like in Concept 1,
module (called SCV)
(e.g. files paths were not setup), one should explicitly show the drive and folder location of the
image file (yellow highlight).

The SCV function
inputs. SCV has a defined constant named

SSD equation (shown in lecture) for
stored in a Scilab MAT

Beyond the scope of this concept,
they are defined in
pointers to the memory locations of the image pixels. The important point to note is that Scilab’s
SCV calls OpenCV
installing OpenCV separately.

To show the pixel location in the original image with the best match, the Scilab function
minMaxLoc is used. Recall that with SSD, the value of 0 means a perfect match.

Step 2: Execute the program

Referring to Figure 2A
(10x5). Indeed, Figure 2C shows
location.

Figure 2C: Result of executing

Congratulations! You can

Like in Concept 1, scicv_Init
(called SCV). The imread

(e.g. files paths were not setup), one should explicitly show the drive and folder location of the
image file (yellow highlight).

The SCV function matchTemplate
inputs. SCV has a defined constant named

SSD equation (shown in lecture) for
MAT-type variable. This progr

Beyond the scope of this concept,
they are defined in OpenCV and contain much more information like header information and
pointers to the memory locations of the image pixels. The important point to note is that Scilab’s

OpenCV libraries. The beauty of this is that one does not have to go thru the burd
separately.

To show the pixel location in the original image with the best match, the Scilab function
is used. Recall that with SSD, the value of 0 means a perfect match.

Execute the program

Figure 2A, we know the 1x1 black pixel should in the image at row 10, column 5 i.e.
(10x5). Indeed, Figure 2C shows

Result of executing

Congratulations! You can
actually calls OpenCV libraries

scicv_Init is first called to launch Scilab’s image processing ATOMS
imread function is used to read the desired image files. If needed

(e.g. files paths were not setup), one should explicitly show the drive and folder location of the

matchTemplate takes the image, template and de
inputs. SCV has a defined constant named

SSD equation (shown in lecture) for matchTemplate
type variable. This progr

Beyond the scope of this concept, MAT variables are not simple 2
and contain much more information like header information and

pointers to the memory locations of the image pixels. The important point to note is that Scilab’s
libraries. The beauty of this is that one does not have to go thru the burd

To show the pixel location in the original image with the best match, the Scilab function
is used. Recall that with SSD, the value of 0 means a perfect match.

, we know the 1x1 black pixel should in the image at row 10, column 5 i.e.
(10x5). Indeed, Figure 2C shows the SSD shows an exact match (minimum value of 0) at that

Result of executing sciLabTracking1_0a.sce

Congratulations! You can track objects using Scilab’s matchTemplate which
actually calls OpenCV libraries

is first called to launch Scilab’s image processing ATOMS
function is used to read the desired image files. If needed

(e.g. files paths were not setup), one should explicitly show the drive and folder location of the

takes the image, template and de
inputs. SCV has a defined constant named CV_TM_SQDIFF

matchTemplate
type variable. This program names this variable

variables are not simple 2
and contain much more information like header information and

pointers to the memory locations of the image pixels. The important point to note is that Scilab’s
libraries. The beauty of this is that one does not have to go thru the burd

To show the pixel location in the original image with the best match, the Scilab function
is used. Recall that with SSD, the value of 0 means a perfect match.

, we know the 1x1 black pixel should in the image at row 10, column 5 i.e.
the SSD shows an exact match (minimum value of 0) at that

sciLabTracking1_0a.sce

track objects using Scilab’s matchTemplate which
actually calls OpenCV libraries

is first called to launch Scilab’s image processing ATOMS
function is used to read the desired image files. If needed

(e.g. files paths were not setup), one should explicitly show the drive and folder location of the

takes the image, template and de
CV_TM_SQDIFF (yellow highlight) which implements

matchTemplate. The results of matchTemplate are
am names this variable

variables are not simple 2-dimensional arrays. Rat
and contain much more information like header information and

pointers to the memory locations of the image pixels. The important point to note is that Scilab’s
libraries. The beauty of this is that one does not have to go thru the burd

To show the pixel location in the original image with the best match, the Scilab function
is used. Recall that with SSD, the value of 0 means a perfect match.

, we know the 1x1 black pixel should in the image at row 10, column 5 i.e.
the SSD shows an exact match (minimum value of 0) at that

sciLabTracking1_0a.sce shows

track objects using Scilab’s matchTemplate which
actually calls OpenCV libraries

© Copyright Paul Oh

is first called to launch Scilab’s image processing ATOMS
function is used to read the desired image files. If needed

(e.g. files paths were not setup), one should explicitly show the drive and folder location of the

takes the image, template and desired similarity measure as
(yellow highlight) which implements
The results of matchTemplate are

am names this variable img_result

dimensional arrays. Rat
and contain much more information like header information and

pointers to the memory locations of the image pixels. The important point to note is that Scilab’s
libraries. The beauty of this is that one does not have to go thru the burd

To show the pixel location in the original image with the best match, the Scilab function
is used. Recall that with SSD, the value of 0 means a perfect match.

, we know the 1x1 black pixel should in the image at row 10, column 5 i.e.
the SSD shows an exact match (minimum value of 0) at that

shows output of matchTemplate

track objects using Scilab’s matchTemplate which

© Copyright Paul Oh

is first called to launch Scilab’s image processing ATOMS
function is used to read the desired image files. If needed

(e.g. files paths were not setup), one should explicitly show the drive and folder location of the

sired similarity measure as
(yellow highlight) which implements
The results of matchTemplate are

img_result.

dimensional arrays. Rather,
and contain much more information like header information and

pointers to the memory locations of the image pixels. The important point to note is that Scilab’s
libraries. The beauty of this is that one does not have to go thru the burden of

To show the pixel location in the original image with the best match, the Scilab function

, we know the 1x1 black pixel should in the image at row 10, column 5 i.e.
the SSD shows an exact match (minimum value of 0) at that

matchTemplate

track objects using Scilab’s matchTemplate which

© Copyright Paul Oh

is first called to launch Scilab’s image processing ATOMS
function is used to read the desired image files. If needed

(e.g. files paths were not setup), one should explicitly show the drive and folder location of the

sired similarity measure as
(yellow highlight) which implements
The results of matchTemplate are

her,
and contain much more information like header information and

pointers to the memory locations of the image pixels. The important point to note is that Scilab’s
en of

To show the pixel location in the original image with the best match, the Scilab function

, we know the 1x1 black pixel should in the image at row 10, column 5 i.e.
the SSD shows an exact match (minimum value of 0) at that

matchTemplate

track objects using Scilab’s matchTemplate which

Video Processing

Exercises

In lecture,
the sliding process to comprehend why matchTemplate yielded a (20, 0) location result.

1.

2.

Video Processing

Exercises

In lecture, the above (50x1
the sliding process to comprehend why matchTemplate yielded a (20, 0) location result.

 Use Pixelformer to create your own 50x10 and 10x10 pixel map and corresponding PNG
files. For example, replace the L
your pixel map (e.g. cut
SSD program to calculate the match result. Compare with sliding figures that the result
indeed is the location

 Create a 50x20 pixel map and repeat the “1” above

the above (50x10) image and (10x10)
the sliding process to comprehend why matchTemplate yielded a (20, 0) location result.

Use Pixelformer to create your own 50x10 and 10x10 pixel map and corresponding PNG
files. For example, replace the L
your pixel map (e.g. cut-and
SSD program to calculate the match result. Compare with sliding figures that the result
indeed is the location of the template in the image file

Create a 50x20 pixel map and repeat the “1” above

) image and (10x10)
the sliding process to comprehend why matchTemplate yielded a (20, 0) location result.

Use Pixelformer to create your own 50x10 and 10x10 pixel map and corresponding PNG
files. For example, replace the L-shaped

and-paste the figure in PPT) with relevant pixel locations. Run your
SSD program to calculate the match result. Compare with sliding figures that the result

of the template in the image file

Create a 50x20 pixel map and repeat the “1” above

) image and (10x10) template were introduced. The notes showed
the sliding process to comprehend why matchTemplate yielded a (20, 0) location result.

Use Pixelformer to create your own 50x10 and 10x10 pixel map and corresponding PNG
shaped figure above with say, an X

paste the figure in PPT) with relevant pixel locations. Run your
SSD program to calculate the match result. Compare with sliding figures that the result

of the template in the image file

Create a 50x20 pixel map and repeat the “1” above

template were introduced. The notes showed
the sliding process to comprehend why matchTemplate yielded a (20, 0) location result.

Use Pixelformer to create your own 50x10 and 10x10 pixel map and corresponding PNG
figure above with say, an X

paste the figure in PPT) with relevant pixel locations. Run your
SSD program to calculate the match result. Compare with sliding figures that the result

of the template in the image file

Create a 50x20 pixel map and repeat the “1” above

© Copyright Paul Oh

template were introduced. The notes showed
the sliding process to comprehend why matchTemplate yielded a (20, 0) location result.

Use Pixelformer to create your own 50x10 and 10x10 pixel map and corresponding PNG
figure above with say, an X-shaped one. Annotate

paste the figure in PPT) with relevant pixel locations. Run your
SSD program to calculate the match result. Compare with sliding figures that the result

© Copyright Paul Oh

template were introduced. The notes showed
the sliding process to comprehend why matchTemplate yielded a (20, 0) location result.

Use Pixelformer to create your own 50x10 and 10x10 pixel map and corresponding PNG
shaped one. Annotate

paste the figure in PPT) with relevant pixel locations. Run your
SSD program to calculate the match result. Compare with sliding figures that the result

© Copyright Paul Oh

template were introduced. The notes showed

Use Pixelformer to create your own 50x10 and 10x10 pixel map and corresponding PNG
shaped one. Annotate

paste the figure in PPT) with relevant pixel locations. Run your
SSD program to calculate the match result. Compare with sliding figures that the result

